

Python®
Automation

by Alan Simpson

Python® Automation For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2026 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and
training of artificial technologies or similar technologies.

Media and software compilation copyright © 2026 by John Wiley & Sons, Inc. All rights reserved, including rights for
text and data mining and training of artificial technologies or similar technologies.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is Wiley-VCH
GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Python is a trademark or registered trademark of Python Software Foundation in the United States. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. CERTAIN AI SYSTEMS HAVE BEEN USED IN THE CREATION OF THIS WORK. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media that is not included in the version you purchased, you may download this material at http://booksupport.
wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number is available from the publisher.

ISBN 978-1-394-37142-6 (pbk); ISBN 978-1-394-37144-0 (ebk); ISBN 978-1-394-37143-3 (ebk)

http://www.wiley.com
http://www.copyright.com
http://www.wiley.com/go/permissions
mailto:Product_Safety@wiley.com
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents iii

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 2
Beyond the Book. . 2
Where to Go from Here. . 3

PART 1: GETTING STARTED WITH PYTHON
AUTOMATION. . 5

CHAPTER 1:	 Automating with Python. . 7
Choosing a Programming Language . . 8
Understanding Python Syntax. . 10
Getting Python. . 11

Identifying the hardware requirements. . 11
Installing Python . . 12

CHAPTER 2:	 Choosing a Code Editor. . 15
Installing VS Code . . 16
Installing Python Extensions. . 18
Creating a Folder for a New Project. . 19

Opening a project’s folder in VS Code . . 20
Selecting your Python version. . 21
Opening the Terminal in VS Code. . 22
Checking your Python version. . 23

Using Virtual Environments. . 24
Creating a virtual environment. . 25
Activating a virtual environment. . 26

Installing Modules. . 28
Writing and Running Python Scripts. . 30

Writing a Python script. . 30
Running a Python script. . 32

CHAPTER 3:	 Python Basics for Automation . . 35
Understanding Python Comments. . 35
Mastering Variables and Data Types . . 36

Working with numbers. . 37
Working with text (strings). . 38
Deciding true or false with Booleans. . 39
Using lists. . 39
Making immutable lists with tuples . . 40

iv Python Automation For Dummies

Defining key–value pairs in dictionaries. . 40
Leaving things hanging with None. . 41

Formatting Output . . 42
Dealing with Dates and Times. . 45
Manipulating Data with Operators. . 47

Using arithmetic and string operators. . 47
Using assignment operators. . 48
Recognizing other operators. . 49

Getting Loopy with Loops . . 51
Looping with for. . 51
Looping for a while. . 52
Bailing out of loops. . 53

Making Decisions. . 55
Deciding with if. . .else . . 55
Compacting decisions with a ternary operator. 56
Deciding with match. . 57

Defining Python Functions. . 58
Defining default values for parameters. . 60
Using type hints in Python functions. . 60

Creating Classes and Objects . . 61
Handling Exceptions. . 63

PART 2: AUTOMATING COMMON COMPUTER TASKS. 67

CHAPTER 4:	 Automating Files and Folders . . 69
Demystifying the Buzzwords. . 70

Drives, directories, folders, and files. .71
Absolute versus relative paths . . 72
Backslashes in Windows paths. . 73

Playing It Safe. . 74
Navigating Folders and Files . . 74
Organizing Files by Type. . 81

Using mkdir for subfolders . . 86
Moving files with shutil. . 86
Making the script your own. . 87

Renaming Files in Bulk. . 87
Renaming files with Python. . 90
Using the bulk renaming script. . 91

CHAPTER 5:	 Automating File Management . . 93
Deleting Old and Temporary Files . . 93

Identifying old files . . 96
Matching the file pattern . . 96
Sending files to the trash. . 97
Using the deletion script safely. . 97

Table of Contents v

Backing Up Files. . 98
Creating folders from Python . . 101
Copying files with Python. . 101
Personalizing the backup script . . 102

Finding and Removing Duplicate Files. . 103
Calculating a file hash. . 106
Finding duplicate files. . 107
Deleting duplicate files. . 108
Tweaking the find duplicates script . . 108

Compressing Files. . 109
Compressing files with Python . . 112
Setting your compression parameters. . 113

Decompressing Files. . 114
Unzipping files with Python. . 116
Using the decompression script. . 117

CHAPTER 6:	 Automating Image and Video Files. 119
Resizing, Rotating, Flipping, and Cropping Images. 120

Resizing images. . 125
Rotating images. . 126
Flipping images . . 126
Cropping images. . 127
Customizing the image processor. . 128

Converting Image File Types. . 129
Converting files with Python . . 131
Personalizing the conversion script . . 132

Extracting Frames from Video Files . . 133
Importing modules for video extraction . . 135
Looping through a video . . 136
Tweaking the video conversion script . . 138

CHAPTER 7:	 Automating Mouse and Keyboard. 139
Granting Permissions on a Mac . . 140
Moving the Mouse, Clicking, Dragging, and Scrolling. 141

Understanding screen coordinates . . 141
Controlling the mouse speed . . 141
Stopping a wild mouse. . 142
Finding the screen locations of things. . 142
Using mouse control with a specific app. . 144
Trying out mouse control. . 144

Typing Text with Python. . 146
Controlling the typing speed. . 147
Typing long passages of text. . 147
Pressing special keys. . 148

vi Python Automation For Dummies

Pressing hotkeys. . 148
Detecting the operating system . . 149

Detecting Keystrokes . . 150
Creating Your Own Keyboard Shortcuts . . 151
Automating Screenshots . . 155

Taking screenshots with Python. . 157
Personalizing the auto screenshot script. . 158

CHAPTER 8:	 Automating the Office. . 159
Automating Microsoft Word . . 159

Naming your Word document. . 162
Defining your Word content . . 163

Automating Microsoft Excel. . 164
Specifying your workbook. . 167
Defining content for your workbook . . 167

Creating and Opening PDFs. . 168
Defining content for your PDF. . 172
Identifying your PDF. . 172

Watermarking PDFs . . 173
Creating your watermark image. . 176
Adapting the script to your needs. . 177

PART 3: AUTOMATING THE INTERNET . . 179

CHAPTER 9:	 Interacting with APIs. . 181
Obtaining API Keys . . 181
Safely Storing API Keys. . 182

Creating a .gitignore file. . 184
Using an API key in your script . . 185

Handling JSON Data . . 185
Parsing and serializing JSON data. . 187
Reading and writing JSON files . . 188

Understanding REST APIs. . 190
Making API requests. . 191
Parsing API responses . . 193

Reviewing a Complete REST API Script. . 194

CHAPTER 10:	Automating the Web. . 197
Automating Web Browsers . . 197

Loading drivers for your browser. . 198
Finding text boxes to fill. . 200

Automating Filling Forms Online. . 201
Finding a control . . 203
Submitting a form with Enter . . 204

Table of Contents vii

Filling Multiple Text Boxes. . 204
Clicking a form’s Submit button . . 207
Adapting the script to your needs. . 207

Filling Text Boxes from a File. . 208

CHAPTER 11:	Scraping Web Pages. . 213
Picking the Right Tools for Web Scraping . . 213
Scraping Links from a Web Page. . 214

Sending a browser header. . 215
Parsing a web page. . 216

Extracting Data from a Web Page. . 217
Finding elements to scrape. . 218
Scraping data from the page. . 221

Automating Data Extraction. . 222
Determining whether a business is open 225
Scraping stock market data. . 227

CHAPTER 12:	Automating Email and Text Messages. 229
Sending Bulk Email Automatically. . 229

Collecting account information. . 230
Creating a .env file. . 230
Creating your email-sending script. . 231
Sending HTML mail. . 234
Putting email recipient addresses in a file. 235

Automatically Sending Text Messages. . 236
Storing SMS account information. . 237
Defining your recipient list and message. . 239
Storing recipient numbers. . 239

CHAPTER 13:	Automating Social Media . . 243
Acquiring API Keys and Modules. . 243
Automating Posting. . 244

Setting up your project. . 245
Making the script your own. . 249

Creating Content for Your Posts. . 249
Tracking Performance Metrics . . 251

Getting Instagram API access . . 251
Setting up your script. . 251
Defining your metrics and timeframe . . 254

Analyzing Trends. . 255
Viewing the trends. . 257
Setting your own keywords and timeframe 257

viii Python Automation For Dummies

PART 4: AUTOMATING MORE ADVANCED STUFF 259

CHAPTER 14:	Scheduling Tasks. 261
Using the Schedule Module. . 261

Understanding how the schedule module works. 263
Scheduling tasks for intervals. . 264

Using the APScheduler Module. . 265
Using APScheduler with intervals. . 267
Using APScheduler with dates and times 268

Automating Python Scripts . . 271
Running scripts as subprocesses . . 271
Running scripts as imports. .274

CHAPTER 15:	Integrating with Artificial Intelligence. 277
Accessing Free AI through an API. . 277
Warming Up to a Local Chatbot . . 282

Installing and running Ollama. . 283
Downloading AI models with Ollama. . 283
Building a simple local chatbot. . 284

Creating a Conversational Chatbot. . 287
Developing an AI Image Generator. . 290

Showing the generated image onscreen. . 295
Hitting up Hugging Face. . 301

PART 5: THE PART OF TENS. . 309

CHAPTER 16:	Top Ten Zen of Python Guidelines. 311
Beautiful Is Better than Ugly. . 311
Explicit Is Better than Implicit . . 314

Using type hints. . 315
Using comments. . 316
Handling errors. . 316

Simple Is Better than Complex. . 317
Complex Is Better than Complicated. . 320
Flat Is Better than Nested. . 321

Flattening nested conditionals . . 321
Using list comprehension. . 322

Sparse Is Better than Dense . . 324
Readability Counts . . 325
Special Cases Aren’t Special Enough to Break the Rule. 326
Practicality Beats Purity . . 328
Errors Should Never Pass Silently. . 329

Table of Contents ix

CHAPTER 17:	Top Ten Python Error Messages . . 331
Command Not Found. . 331
No Module Named 333
SyntaxError. . 334
NameError. . 335
TypeError . . 336
IndexError. . 337
KeyError . . 339
AttributeError. . 340
ModuleNotFoundError. . 342
FileNotFoundError. . 343
IndentationError. . 345

INDEX. . 347

Introduction 1

Introduction

Welcome to Python Automation For Dummies, the book designed to help you
find out all about Python and the many things you can do with Python
to automate tedious, mundane, and time-consuming computer tasks.

About This Book
You don’t need to read this book cover-to-cover to benefit. Instead, you can treat
it more like a reference for building Python automation scripts and apps as needed,
just by flipping to any example in the book and using the code provided in that
section. Of course, I always explain the code so you understand what’s going on.
That knowledge, in turn, will grow and help you come up with your own creative
solutions to automation tasks and other apps.

This is not a textbook on the Python language. I don’t attempt to teach you every
nook and cranny of the Python language. There are plenty of books available for
that, including Python All-in-One for Dummies and Python Essentials For Dummies
(published by Wiley), both of which I wrote with John Shovic.

For convenience, the kinds of tasks and code you’ll use often are summed up in
Part 1 of this book. When you need a quick reminder on a fundamental task, such
as starting a new app from scratch, you’ll find all the steps there. Common error
messages and such are covered in Chapter 17, so you can get clarification and
advice in a jiffy.

When something in Python leaves you stumped, use this book as a reference,
paging through the table of contents or index to the spot that deals with that bit
of information.

Within this book, you may note that some web addresses break across two lines of
text. If you’re reading this book in print and want to visit one of these web pages,
simply key in the web address exactly as it’s noted in the text, pretending as
though the line break doesn’t exist. If you’re reading this as an e-book, you’ve got
it easy — just click the web address to be taken directly to the web page.

2 Python Automation For Dummies

Foolish Assumptions
This book doesn’t assume you’re already an accomplished software engineer with
years of experience writing Python code. I do assume that you’re tech savvy
enough to understand common tech jargon like files, folders, icons, copy, paste,
gigabytes, and so forth.

If I assume too much, there are plenty of resources available to you to fill in the
blanks. Artificial intelligence (AI) is usually your best bet for getting quick defini-
tions and answers to tech questions. Any free AI will do. In Windows, you can use
Copilot. On a Mac, you can use Apple Intelligence. Or you can use any AI that
includes a free tier such as ChatGPT at https://chatgpt.com.

Icons Used in This Book
Throughout this book, I use icons in the margin to point out content that’s
perhaps a little offbeat relative to the main flow of the text. Here’s the kind of
content each icon represents:

The Tip icon alerts you to juicy information that makes computing easier — a
time-saver or shortcut that’s worth keeping in mind, for example.

Don’t forget to remember these important points because you’re likely to need the
information often. These are usually items that are easy to forget but well worth
remembering.

When an operation could have unpleasant consequences that aren’t easily
undone, the Warning icon alerts you to the dangers and tells you how to avoid
that danger. Always pay attention to this icon.

I use the Technical Stuff icon when I get into the weeds on a particular subject.
You can ignore anything marked with this icon without missing the main point.

Beyond the Book
In addition to the material in the print or e-book you’re reading right now, this
product also comes with a free access-anywhere Cheat Sheet that covers Python
data types and keywords, arithmetic and string operators, assignment operators,

https://chatgpt.com/

Introduction 3

and more. To get this Cheat Sheet, simply go to www.dummies.com and enter
Python Automation For Dummies Cheat Sheet in the Search box.

In addition, I provide all the source code for this book at www.dummies.com/go/
pythonautomationfd. Finally, at that same URL you’ll find a bonus chapter called
“Managing and Speeding Up the Big Jobs.”

Where to Go from Here
Where you go from here is up to you! If you need a specific automation script, go
to the section that describes the script you need to see all of the code for that
script — not a lengthy tutorial on how to write the script. If you’re new to Python
and you don’t have a lot of experience writing Python code, Chapter 1 is a great
place to start.

https://www.dummies.com/
https://www.dummies.com/go/pythonautomationfd
https://www.dummies.com/go/pythonautomationfd

1Getting Started
with Python
Automation

IN THIS PART . . .

Get Python onto your computer.

Download a free editor to write Python code.

Run your Python code.

Master main components of Python for automation.

CHAPTER 1 Automating with Python 7

Chapter 1
Automating with Python

Welcome to Python automation! In this chapter, you explore why Python
is the ideal language for automating mundane, time-consuming com-
puter tasks. If you’ve ever found yourself stuck doing the same boring

computer chores over and over — like renaming a bazillion files, sorting through
spreadsheets, or downloading stuff from the web — Python may just become your
new best friend. It’s a programming language that’s easy to pick up, even if you’re
not a tech wizard, and it’s perfect for automating those mind-numbing tasks that
eat up your time. Think of Python as a trusty robot assistant: You tell it what to do
in plain, simple words (well, code), and it does your work in no time at all.

What makes Python so great for automation is the fact that it has a little some-
thing for everyone. Python has built-in tools to handle all sorts of everyday
tasks — like managing files, crunching data, bossing around your computer —
and a huge pile of free add-ons (called libraries) can do even fancier things, like
scraping websites or sending emails. You don’t need to be a coding genius to get
started — just a few lines of Python can save you hours of clicking and typing.
So, whether you’re organizing your music collection or taming a messy inbox,
Python’s got your back, making life a whole lot easier with a few friendly
commands.

IN THIS CHAPTER

	» Deciding on a programming language

	» Mastering Python language basics

	» Getting up and running with Python

8 PART 1 Getting Started with Python Automation

Choosing a Programming Language
There are many programming languages in the world. They have names like C#,
Go, Java, JavaScript, Python, and TypeScript, to name a few. The TIOBE Index
(www.tiobe.com/tiobe-index) consistently ranks Python as the most popular
language of our time.

JavaScript is great for creating web apps, but it’s rarely used for anything else.
Python excels at AI and automation. In fact, Python has so many ready-to-use
modules designed for automation that it would probably be crazy to use any
language other than Python for the kinds of automation scripts you’ll see
throughout this book.

THINKING LIKE A SOFTWARE ENGINEER:
PUTTING ARTIFICIAL INTELLIGENCE TO
WORK FOR YOU
Writing Python automation requires writing computer code. This book isn’t a replace-
ment for a beginner’s tutorial on the entire Python language. Instead, it’s a collection
of Python automation scripts, designed to automate and simplify mundane, time-
consuming computer tasks.

These days, most software engineers (people who write computer code for a living)
use artificial intelligence (AI) to help with writing code. Sure, you’ll hear many software
engineers complain that AI can’t write code as well as they can, but that sentiment may
be rooted in feeling threatened.

In addition to writing code, AI can easily answer any questions that come up along
the way as you’re using this book. If I throw some terminology at you that leaves you
scratching your head, ask AI to explain things. If some code leaves you stymied, show
the code to AI and ask it to explain the code to you.

You can even tell AI to write an entire script for you, doing exactly what a script in this
book does. But don’t be surprised if the code you get from AI looks different from
what’s in this book. Python offers many tools and techniques for accomplishing any
task. There’s no telling exactly how AI will generate code to perform some feat. If AI
gives you a script that looks nothing like the script in this book, that doesn’t mean one
is right and the other is wrong — you probably just have two scripts that do the same
thing in different ways. That’s not unusual. They say there’s more than one way to bake
a cake. Likewise, there’s more than one way to write a script to accomplish some task.

https://www.tiobe.com/tiobe-index

CHAPTER 1 Automating with Python 9

There’s a lot to like about Python — and many reasons to learn Python beyond
automation. For one, many people regard Python as the easiest language for many
beginners to learn. Python’s syntax is clean and simple — it reads almost
like English.

You’re never stuck without information with Python. There are endless tutorials,
forums, and free libraries (premade code you can borrow) to help you out. Virtually
every modern AI chatbot is perfectly capable of writing Python code for you and
answering any questions about Python that pop into your head.

Python lets you write short, powerful code. What may take 20 lines in another
language often takes just a few lines in Python. That means less typing and fewer
mistakes to try to ferret out. Plus, modern AI can debug your existing code as eas-
ily as it can write code for you.

Let’s zoom in on automation — the topic of this book. When it comes to automa-
tion, Python is a superstar. Whether you’re on Linux, macOS, or Windows, Python
works like a charm. Write your automation script once, and it’ll run anywhere. No
need to reinvent the wheel for different systems.

With Python, you can write a quick script to handle many tasks in minutes.
Although the following code below may not mean much to you right now, it illus-
trates how you can take a daunting task, like renaming hundreds of files in a
folder, with just a few lines of code:

import os

for filename in os.listdir("."):

 os.rename(filename, filename.replace("old", "new"))

Tiny bits of code like that can handle big automation tasks.

Beyond file tasks, Python plays nice with application programming interface
(APIs; define here), databases, Microsoft Excel files, and AI. If you’re automating
something like “Check my email, grab attachments, and update a spreadsheet,”
Python can tie it all together smoothly.

APIs allow Python to interact with AI and other powerful online capabilities,
without your having to reinvent the wheel or host huge files on your own com-
puter. APIs are a hallmark of modern computing, and you definitely want to use a
programming language that makes API access easy.

10 PART 1 Getting Started with Python Automation

Learning Python is like giving yourself a superpower. Python is easy to start,
endlessly useful, and when it comes to automation, unbeatable. You’ll save time,
impress your friends (or boss), and maybe even have some fun along the way.
Perhaps best of all, Python is completely free.

Have I convinced you to choose Python yet?

Understanding Python Syntax
Every language has certain rules of syntax that outline how you must arrange
words in order for them to make sense. Like, “Teddy, jump three times!” If you
say it all jumbled up, or leave out words, like “Jump Teddy three,” Teddy may get
confused and not know what to do. In programming, syntax is the same thing —
you need to order the words so the computer understands what you want. Syntax
is just the rules for putting words and symbols in the right order.

Some programming languages require lots of punctuation, in addition to words,
as part of their syntax. That gets tiresome and makes learning more difficult.
I’ll give you a simple example — a piece of code that checks whether a number is
even or odd and prints a message — in both JavaScript and Python.

JavaScript seems very “busy” with parentheses, curly brackets, and semicolons:

function checkEvenOrOdd(number) {

 if (number % 2 === 0) {

 console.log("The number " + number + " is even!");
 } else {

 console.log("The number " + number + " is odd!");
 }

}

checkEvenOrOdd(7);

That code looks like something written by aliens. But that’s what a JavaScript
requires. You’ve got:

	» Curly brackets {} to wrap the function and the if...else blocks.

	» Parentheses () for the function definition and the if condition.

	» A semicolon (;) at the end of each line (JavaScript loves semicolons).

CHAPTER 1 Automating with Python 11

Now here’s the same thing in Python:

def check_even_or_odd(number):

 if number % 2 == 0:

 print(f"The number {number} is even!")

 else:

 print(f"The number {number} is odd!")

check_even_or_odd(7)

Granted, it’s still not plain English. But it’s much, much cleaner and simpler.
Here’s what’s special about Python:

	» No curly brackets! Python uses indentation (those spaces at the start of lines)
to know what’s inside the function or if...else. It’s like the code is
breathing — it looks airy and neat.

	» Fewer parentheses — only needed for the function definition, not the if
condition.

	» No semicolons — Python doesn’t need them, so the code is less cluttered.

As an experienced instructor who has taught thousands of software developers,
I can assure that all the curly brackets and semicolons are the toughest things
for beginners to get used to — they’re among the main things that drive people
away from learning to code. Learning Python first lets you dodge that bullet.

Getting Python
Python is super lightweight and doesn’t demand much from your hardware, which
is one reason it’s so popular. Think of this as the “minimum stuff” your computer
needs to run Python and get started with coding or automation.

Identifying the hardware requirements
You can run Python on almost any modern computer. That doesn’t include mobile
devices like phones and tablets, but it does include most desktops and laptops.
Here’s what you’ll need at the bare minimum:

	» Python works on Linux, macOS, Windows (7, 8, 10, or 11), and even some
mobile systems. Basically, if it’s a computer from the last 10 to 15 years,
you’re good!

12 PART 1 Getting Started with Python Automation

	» Any modern processor, including Apple M series, or even just a basic
processor like an Intel or AMD processor works fine. Even a 1 gigahertz (GHz)
single-core central processing unit (CPU) can handle it, but it may feel slow for
big projects.

	» In terms of random access memory (RAM), 512 megabytes (MB) is enough to
run Python itself, but 2GB or more is better if you’re doing anything practical
(like automation or running other programs at the same time). Most modern
computers have 8GB of RAM or more, so you’re probably covered.

	» Python’s installer is tiny — about 30MB to 50MB to download and install. You’ll
want at least 100MB to 200MB of free space for Python, its libraries, and your
own code files. If you’re adding big libraries (like for data science), a few
gigabytes of free space is smart.

	» No special graphics card or graphics processing unit (GPU) is needed. Python
runs in a text window, so any basic screen works.

To get your system specs in Windows, press Windows+I to open Settings and
choose System ➪   About. On a Mac, click the Apple menu in the upper-left corner
of your screen, and choose About This Mac.

If you’re automating something heavy — like controlling a web browser with
selenium or processing tons of files — you’ll want more RAM (maybe 8GB) and a
faster CPU. But for most people learning Python, and for everyday automation
(like renaming files or sending emails), even a cheap laptop is probably sufficient,
as long it’s not a Chromebook or a similar device with a mobile operating system.

Installing Python
To use Python, you may first have to install it on your computer. Some Mac com-
puters come with Python version 2 preinstalled. But these days, you really need to
use Python 3, so plan on installing Python yourself. It’s free, it’s easy, and I can
give you the steps. However, I can’t tell you exactly what you’ll see when you
browse to the Python website, because websites change often. If you’re using a
Mac or Windows PC, follow these steps (if you’re using Linux, see the nearby
sidebar):

1.	 Go to www.python.org.

2.	 Click Downloads and click either Mac or Windows.

You don’t technically need to click Mac or Windows — the website will detect
which operating system you’re using and when you hover your mouse over
Downloads (as I did in Figure 1-1), you’ll see the option to download the correct

https://www.python.org/

CHAPTER 1 Automating with Python 13

version. As you can see in the figure, I was using Windows, so the website
offered that automatically.

3.	 Click the button that shows the current version number.

In Figure 1-1, the version is 3.13.2, but the number you see may be different.

4.	 Open the folder to which you downloaded Python.

This is usually your Downloads folder.

5.	 Double-click the icon of the downloaded file.

6.	 Follow the onscreen instructions to Install (or Upgrade Now if you’re
given that option).

FIGURE 1-1:
Download

options from the
Python website.

INSTALLING PYTHON ON LINUX
Most Linux distributions come with Python preinstalled (usually Python 3). There are
many different Linux distributions (or distros), including Arch, Debian, Fedora, and
Ubuntu. I can’t give step-by-step instructions for each. But a good starting point may
be to determine whether you already have Linux installed and, if so, which version.
You should be able to do so following these steps:

1.	 Press Ctrl+Alt+T to open the Terminal.

2.	 Type the following and press Enter:

python3 --version

(continued)

14 PART 1 Getting Started with Python Automation

If the command returns something like Python 3.12.2, Python is installed. If you get an
error, try the following command:

python --version

If you get an error message on both tries, or you want a newer version of Python, you
can still install Python from the Python website. Download and install the Gzipped
source tarball or XZ compressed source tarball file. Or check the documenta-
tion for your specific Linux distribution for recommendations. Optionally, you can also
ask any AI for recommendations related to your specific Linux distro.

(continued)

CHAPTER 2 Choosing a Code Editor 15

Chapter 2
Choosing a Code Editor

To write Python code, you need a code editor. If you’ve been coding with
Python for a while and you already have a preferred editor, you’re welcome
to stick with that. If you’re just starting out with Python, I recommend

Visual Studio Code (VS Code for short), which is the editor I use in this book. VS
Code is the most widely used code editor in the world, and it’s very well suited to
Python coding.

On a personal front, I also use VS Code to write code in Cascading Style Sheets
(CSS), Hypertext Markup Language (HTML), and JavaScript, the main languages
for creating websites and web apps. If you’re thinking about learning that kind of
coding, VS Code will serve you well there, too.

The hardware requirements for VS Code are minimal. Here’s a quick rundown:

	» Operating system: Linux 64-bit distro (for example, Ubuntu 16.04+, Debian 9+,
Fedora 24+, and so on); macOS 10.15 (Catalina) or later; or Windows 7, 8.1, 10,
or 11 (32-bit or 64-bit).

	» Processor: 1.6 GHz or faster (for example, Intel Core 2 Duo, AMD Athlon 64 X2,
Apple M1, or better).

	» Random access memory (RAM): 1GB (Linux or Windows) or 512MB (macOS).
But 4GB or more is better.

IN THIS CHAPTER

	» Choosing and installing a code editor

	» Creating and using virtual
environments

	» Starting a new project

	» Using Python scripts

16 PART 1 Getting Started with Python Automation

	» Storage: About 200MB to 300MB for the basic installation.

	» Display: At least 1,024 x 768 resolution.

Most modern computers exceed those requirements considerably.

Installing VS Code
To use VS Code as your code editor, the first step is to download and install it. This
is basically a matter of browsing to https://code.visualstudio.com and
following the onscreen instructions. Here are step-by-step instructions — but
remember, websites can change at any time, so if something is different for you,
just follow any onscreen instructions you see:

1.	 Browse to https://code.visualstudio.com.

2.	 Click Download for Windows, Download for macOS, or Download for
Linux depending on which operating system you’re using.

3.	 Open the folder to which you downloaded the file (usually your
Downloads folder).

4.	 Double-click the icon for the downloaded file (the filename usually starts
with VSCode).

If you’re using Windows, follow the onscreen instructions. When you get to the
page about additional tasks, feel free to check or uncheck any boxes based on
your preferences. I typically set up mine as shown in Figure 2-1.

If you’re using macOS, drag the Visual Studio Code.app file that was
extracted from the downloaded Zip file to your Applications folder.

VS Code should be installed at this point. In Windows, you should be able to Start
it from your Start menu (you may have to search for it on the menu if it’s not
readily apparent). If you opted for a Desktop icon, double-click that icon to open
VS Code. When VS Code is running, you can right-click its icon in the taskbar and
choose Pin to Taskbar so you can easily start it right from the taskbar in the future.

On a Mac, you should be able to start VS Code from its icon in Launchpad or from
the Applications folder. If you see a warning about VS Code being downloaded
from the internet, go ahead and open it anyway. When VS Code is running, you can
right-click its icon in the Dock and choose Options ➪ Keep in Dock for easy access
in the future.

https://code.visualstudio.com/
https://code.visualstudio.com/

CHAPTER 2 Choosing a Code Editor 17

VS Code offers free artificial intelligence (AI) in the form of Copilot. The first time
you start VS Code, you may see the option to set up Copilot for free. It’s a great tool
to help with learning to code. You’ll need a GitHub account to enable it. If you have
a GitHub account, you can set up Copilot now; otherwise, you can skip that option
for the time being and come back to it later.

VS Code will likely default to a dark theme, which you’re welcome to use if you
prefer. However, throughout this book, I use a light theme, because the images
just look better on paper that way. To choose your own theme, click Settings in VS
Code (the gear icon in the lower-left corner) and choose Themes ➪ Color Theme.
I use the Light Modern theme throughout this book.

The bar of icons at the left side of VS Code (see Figure 2-2) is called the Activity
Bar. It contains icons you’ll use often. To see the name of any icon, just hover the
mouse pointer over the icon. In the next section, you’ll use the Extensions icon to
add Python extensions to VS Code.

FIGURE 2-1:
Additional

options
for Windows.

18 PART 1 Getting Started with Python Automation

Installing Python Extensions
To write Python code in VS Code, you’ll need to install the VS Code Python
extensions. Follow these steps:

1.	 Click Extensions in the VS Code Activity Bar (shown near the mouse
pointer in Figure 2-2).

2.	 In the Search box near the top of the left pane, type Python.

3.	 Find Python by Microsoft (it has more than 100 million downloads) and
click its Install button (see Figure 2-3).

Don’t worry about other Python extensions.

FIGURE 2-2:
The Activity Bar in

VS Code. Hover
the mouse

pointer over any
icon to

see its name.

FIGURE 2-3:
Install the Python

extension from
Microsoft.

CHAPTER 2 Choosing a Code Editor 19

It should take only a few seconds to install the extension. When it’s done, remove
the search term Python from the Search box to see all your installed extensions.
That list should now include Pylance, Python, and Python Debugger, as shown in
Figure 2-4 (all three are included in the download).

If you hit a snag in VS Code, or you’re just wondering how to do something, feel
free to ask AI for help. Virtually all modern AI chatbots can tell you anything you
want to know about VS Code.

Creating a Folder for a New Project
Whether you’re writing a small automation script or a large app, you’ll be working
on a project. In Python, it’s always a good idea to put each project in its own
folder. That folder is referred to as the workspace folder in VS Code. Before we go
any further, let’s create a new empty folder so that you can see all the steps involved:

1.	 Close VS Code if it’s still open.

In Windows or Linux, choose File ➪ Exit from the VS Code menu bar. In macOS,
choose Code ➪ Quit Visual Studio Code from the VS Code menu bar.

FIGURE 2-4:
Installed Python

extensions.

20 PART 1 Getting Started with Python Automation

2.	 Navigate to wherever you’d like to put your folder.

It can be a cloud drive, if you like. Or you can just put it on the Desktop for now
and move it to another location later as convenient.

3.	 Create the folder.

You should be able to just right-click an empty spot on the Desktop (or in the
current folder) and choose New ➪ Folder in Windows or New Folder in macOS.

4.	 Name the folder First Python (unless you prefer a different name).

If you don’t get the folder name right on the first try, right-click the folder’s icon,
choose Rename, type the correct name, and press Enter.

Now that you have a new, empty folder to work with, the next step is to open that
folder in VS Code.

Opening a project’s folder in VS Code
Whether you’re starting a new project, or returning to an existing project you’ve
already started, the first step will be to open the project folder in VS Code.

If you’re using Windows, you may be able to right-click the folder’s icon and
choose Open With ➪ VS Code or Show More Options ➪ Open with Code to open VS
Code and the folder simultaneously.

Regardless of what operating system you’re using, you can follow these steps to
open your project folder in VS Code:

1.	 Open VS Code.

2.	 Near the top of the Activity Bar at the left, click Explorer.

3.	 Click Open Folder.

4.	 Navigate to the folder’s parent directory, click the folder’s icon, and
click Open.

5.	 If you see a message about trusting the folder, choose Yes, I Trust the
Authors (because you are the author!).

The Explorer pane remains open. The name of the folder you opened appears near
the top of that pane (see Figure 2-5). That folder is the project’s root folder, also
known as the workspace folder in VS Code. All the subfolders and files that make up
your project will be contained within that workspace folder.

CHAPTER 2 Choosing a Code Editor 21

Clicking the root folder name in VS Code expands and collapses it to show or
hide files in that folder. Usually, you want it expanded to see subfolders and files
contained within your project.

Selecting your Python version
Before you start doing any actual work with Python, it’s a good idea to know what
version of Python (if any) is currently active. So, the first thing you may want to
do after opening a folder in VS Code is follow these steps:

1.	 From the VS Code menu bar, choose View ➪ Command Palette.

If you prefer, press Ctrl+Shift+P in Windows or ⌘  +Shift+P in macOS. Pressing
F1 may also work.

2.	 Type sel and click Python: Select Python Interpreter from the drop-down
menu, as shown in Figure 2-6.

3.	 Click the Recommended Python interpreter, as shown in Figure 2-7, if you
have multiple versions from which to choose.

You won’t see anything on the screen indicating which Python interpreter you’ve
chosen, but don’t worry: I show you how to determine that, using the Terminal,
in the next section.

FIGURE 2-5:
A project folder

open in the
Explorer pane.

22 PART 1 Getting Started with Python Automation

In this chapter, I had you select the Recommended interpreter in case you’re just
getting started with Python and just want to use the latest Python version. In
practice, some projects require specific Python versions, so VS Code lets you pick
one each time you start it. You won’t need this for this book, but I’m mentioning
it because choosing a specific version helps advanced developers.

Opening the Terminal in VS Code
Much of the time when working with Python, you’ll use the Terminal pane. The
Terminal provides a command line interface (CLI) for entering commands from the
keyboard. You can open the Terminal from the menu, or shortcut keys, as follows:

	» Choose View ➪ Terminal from the menu bar.

	» Press F1, or press Ctrl+` in Windows or Command+` in macOS. ` is the
backtick character, usually to the left of the number 1 on the keyboard.

The Terminal opens near the bottom of the VS Code window, looking something
like Figure 2-8 (in Windows). The PS and path you see are the command prompt,
where you type your commands.

FIGURE 2-7:
Choose the

Recommended
Python

interpreter.

FIGURE 2-6:
Selecting a

Python
interpreter.

CHAPTER 2 Choosing a Code Editor 23

In Linux and macOS, the command prompt will be different, but don’t worry
about that right now. I explain more after we activate a virtual environment a little
later in this chapter. However, it’s worth noting that you’re not stuck with what-
ever happens to be showing as your default command line shell. You can use the
drop-down arrow next to the current shell name to choose a different command
line shell if you like.

You always want to know what Python version you’re using in VS Code, and the
Terminal lets you find out, as I explain in the next section.

Checking your Python version
To see what Python version you’re currently using, you can enter either the
command python –version or python -V (the case matters here). But until
you’ve set up a virtual environment (see the next section), that command may
give you an error message. The trick to get around that may seem strange, but
here it is:

	» In Windows, use py rather than python at the command.

	» In Linux or macOS, use python3 rather than python as the command.

The reason for this weirdness has to do with the operating system PATH that
determines how system commands (which are run from the operating system)
have been treated in the past, and the fact that different projects may require dif-
ferent Python versions. Both py and python3 are aliases for the python command
and will use whatever python version is currently available. In VS Code, that’s the
Python version you chose when choosing Python: Select Python Interpreter from
the command palette (see “Selecting your Python version,” earlier in this chapter).

Python code is case-sensitive, meaning you can’t use uppercase and lowercase
letters interchangeably. You must use the same uppercase and lowercase letters
shown in this book for things to work as described in this book.

FIGURE 2-8:
The Terminal

in VS Code.

24 PART 1 Getting Started with Python Automation

When VS Code tells you it doesn’t recognize python as a command, you can still
determine your Python version using the following:

	» In Windows, enter the command py –version or py -V to determine your
Python version.

	» In Linux or macOS, enter the command python3 –version or python3 -V to
determine your Python version.

After you type the appropriate command and press Enter, the current Python
version will show just under the command you typed, as shown in Figure 2-9.

After you’ve set up and activated a virtual environment, the python command
will work as expected. Let’s get started on the whole business of virtual
environments now.

Using Virtual Environments
Every Python script or app should live in its own folder (its workspace folder) for
organization and portability. Each one also needs its own virtual environment,
specifying the Python version and module dependencies, to run correctly. This
setup lets you execute the script on any computer — Linux, macOS, Windows —
regardless of the system’s Python version or installed modules.

At first, the process of creating a virtual environment may seem like a bit of a pain.
But you get used to it, and the advantages are well worth the tiny effort it takes to
create and activate a virtual environment.

FIGURE 2-9:
Using Python

version 3.13.2 in
this example.

CHAPTER 2 Choosing a Code Editor 25

Creating a virtual environment
The command to create a virtual environment is, technically, python -m venv
followed by a name for the virtual environment. But, of course, that python com-
mand may fail, so you’ll have to use the py alias in Windows or the python3 alias
in Linux or macOS to get it to work.

The -m is a flag the tells Python to run a module named venv as a script, rather
than as a module (which is something we normally add to existing scripts rather
than run directly). That name, venv is short for virtual environment.

You also need to give the virtual environment a name. The virtual environment is
stored in a subfolder under the workspace folder name. You can name your virtual
environment anything you like, but .venv is a common name. That .venv name
offers several advantages over some name you choose at random:

	» The dot in .venv signals to other developers that the folder contains
configuration or utility information and is not part of the actual Python code.

	» Many modern editors like VS Code and PyCharm recognize .venv as a virtual
environment and auto-detect it for Python interpreter selection, reducing
setup steps.

	» On Unix-like systems (Linux, macOS), files and folders starting with a dot are
hidden unless the user specifically knows how to look for them. That prevents
less experienced users from messing about in the .venv folder without
knowing what they’re doing.

In short, you can think of using .venv as the virtual environment folder name a
“best practice,” and the consistency will make it easier to recognize its purpose
at a glance.

To create a virtual environment named .venv, open the VS Code Terminal and enter
the appropriate command:

	» Windows: py -m venv .venv

	» Linux or macOS: python3 -m venv .venv

You won’t get any feedback in the Terminal after you press Enter. But if you look
at the Explorer pane, you’ll probably see the .venv folder icon under the root of
your workspace folder, First Python in our working example. You may also see
the message shown in Figure 2-10 pop up in the lower-right corner of VS Code.

26 PART 1 Getting Started with Python Automation

The message is asking if you want to associate the virtual environment with the
workspace folder, which is just another name for the root folder, or the folder that
contains the entire project (including the virtual environment). Go ahead and click
Yes. But if you don’t get that opportunity, don’t worry about it. Activating the
virtual environment each time you open the project’s folder will ensure that VS
Code “knows” to use the Python version and add-ins from the virtual environ-
ment every time you open that folder to run or work on your script.

Activating a virtual environment
Creating a virtual environment doesn’t activate the virtual environment. You
always want to make sure your virtual environment is activated before you start
working on your script or run a script. That you’ll do in the Terminal window of
VS Code. The command prompt in the Terminal should still show the path of the
workspace root folder. Enter one of the commands to run the activate script within
that folder, depending on your operating system:

	» Windows: .venv\Scripts\activate

	» Linux or macOS: .venv/bin/activate

Notice that Windows uses backslashes (\), while Linux and macOS use forward
slashes (/). Remember to use the same uppercase/lowercase letters shown here.

If you see a warning about the script coming from an “unknown publisher,” type
A and press Enter to always run. The publisher in this instance is the Python
Software Foundation, which created the venv module, and you can certainly
trust them.

When a virtual environment is active, the name of that virtual environment
shows in the command prompt, so you know the virtual environment. Figure 2-11
shows how the command prompt may look in Windows, where the name .venv
is enclosed in parentheses at the start of the command prompt.

In a Linux or macOS environment, the command prompt path won’t look the
same as shown in Figure 2-11. If you’re using the zsh command line shell, then it
will look more like this:

.venvalan@MacBookAir First Python %

FIGURE 2-10:
A VS Code

message about a
newly created

virtual
environment.

CHAPTER 2 Choosing a Code Editor 27

If you’re using the bash shell, it will look more like this:

.venvMacBookAir:First Python alan$

On your own computer, MacBookAir will be the name of the computer you’re
using, and alan will be your own username.

Z shell (or zsh) is a command-line interpreter shell, similar to Bash (short for
Bourne Again Shell), but with more capabilities. Until macOS Catalina 10.15,
released in 2019, macOS used Bash as the default shell; since then, zsh has been
the default shell for macOS.

You can choose which command line shell you want to use by clicking the drop-
down arrow next to the current shell name near the upper-right corner of the
Terminal (refer to Figure 2-8). But Python commands should work the same way
with either shell.

After you’ve activated a virtual environment, you no longer need to use an
alias like py or python3 instead of python in a command. The python command
works without the alias. So, now you can use python --version or python -V
to see the version number of Python you’re using for the current project.

When your workspace folder is open and your virtual environment is active,
you’re ready to get to work on creating or modifying your script or running a
script if you’ve already created one. It’s extremely unlikely you’ll need to deacti-
vate the virtual environment while you’re in the workspace. But in the interest of
completeness, I should tell you that it’s easy to do. Regardless of what operating
system you’re using, you can just type the following command at the command
prompt and press Enter:

deactivate

FIGURE 2-11:
The .venv

virtual
environment

is active.

28 PART 1 Getting Started with Python Automation

The name of the virtual environment disappears from the start of the command
prompt in the Terminal. The command python goes back to being unrecognized,
so you’d have to use the py or python3 alias to run any Python commands.

Installing Modules
After you’ve created and opened your project workspace folder, selected your
Python version (interpreter), and created and activated your virtual environment,
you can install any modules your project might use. So, what are modules and why
would you use them?

A Python module is Python code already written by someone else to perform cer-
tain tasks. Most modules have been around for years, have been refined and
improved over the years, and are ideal for performing whatever they’re designed
to do. Modules help you avoid reinventing the wheel, by giving you trustworthy
code to perform some common tasks.

Some modules are part of the Python standard library and installed automatically
when you first install Python. You can use them any time in your code just by
including an import statement at the top of your code. The most common and
widely recognized modules include the following:

	» math: Mathematical functions

	» os: Operating system interfaces

	» sys: System-specific parameters and functions

	» datetime: Date and time handling

	» random: Random number generation

To keep the base Python installation lean, many larger more specialized modules
are not included. But you can add them to your virtual environment using a pip
install command at the command prompt when you’re sure that virtual envi-
ronment is active. The name pip is short for Pip Installed Packages, and that’s
exactly what it does. You just enter a command like this:

pip install modulename

CHAPTER 2 Choosing a Code Editor 29

Replace modulename with the name of the module you want to import. Optionally,
you can install multiple modules just by separating their names with a space,
like this:

pip install modulename1 modulename2 modulename3 modulename4

So, how do you know what modules to import for a script? When you’re a beginner
creating your own scripts, you don’t. But when you’re running an existing script,
like those presented in this book, the import statements at the top of the code tell
you exactly which modules you’ll need.

import requests

import tkinter as tk # For GUI

from bs4 import BeautifulSoup # For web scraping

import pandas as pd # For data handling

import matplotlib.pyplot as plt # For plotting

class WeatherDashboard:

 def __init__(self, root):

 self.root = root

 self.root.title("Weather Dashboard")

 self.root.geometry("400x500")

The name of the module to install is always right after the word import. Don’t
worry about from or as names in the preceding sample code (import tkinter as
tk or from bs4 import BeautifulSoup). Just use the name after import in
your install command. For example, to install packages to run that script, you
could enter these pip install commands:

pip install requests

pip install beautifulsoup4

pip install pandas

pip install matplotlib

Optionally, you could import them all with the following single command:

pip install requests beautifulsoup4 pandas matplotlib

Don’t worry about memorizing all of that right now. I’ll be sure to explain
requirements with each automation script presented in this book. For now, it’s
sufficient to make the connection between the import statements at the top of a
script, and the pip install commands for adding those to the script’s virtual
environment.

30 PART 1 Getting Started with Python Automation

Writing and Running Python Scripts
The goal of everything we’ve done so far is to set things up to create a Python app
or script. The word app is short for application, and it typically refers to larger
commercial apps requiring dozens of files of code. In Python, it’s common to refer
to single-file apps as scripts. Most automation projects in this book only require
one file of code, so I use the word script more than app. But regardless of whether
you call it a script or an app, each one requires its own workspace folder and
virtual environment.

In this section, I show you how to write and run a Python script.

Writing a Python script
Now it’s time to write your first Python script. If you’ve been following along, you
have the First Python workspace folder open in VS Code, and your .venv virtual
environment is activated. You’re ready to create your first script. Each script is
just a file within the workspace root folder. That file must have a .py extension.
The filename itself should follow the same rules as Python variable names. In short:

	» Use all lowercase letters.

	» Use a lowercase letter (not a number or underscore) for the first character.

	» Use an underscore (_) instead of a space.

	» Don’t use any special characters (for example, !, @, #, -, and so on).

	» Don’t use names of built-in modules (for example, sys, os, math, random,
datetime, io, and so on).

	» Make the name as descriptive as possible and always use the .py extension.

Table 2-1 shows examples of good and bad filenames, where the third column
indicates what’s wrong in the bad example.

TABLE 2-1	 Good and Bad Python Filenames
Good Filename Bad Filename Why It’s Bad

main.py Main.py It has an uppercase letter.

calculate_stats.py math.py It has the same name as a built-in module.

file_reader.py File Reader.py It has uppercase letters and a space.

process_images.py 9images.py It starts with a number.

CHAPTER 2 Choosing a Code Editor 31

You can ask any AI, “What are names of Python built-in modules?” if you’re not
sure about a filename.

With all the rules and guidelines out of the way, the actual process to create the
file is quite simple in VS Code. Make sure the root folder is selected in the
Explorer pane. From there, follow these steps:

1.	 Click the root folder name (First Python in our working example) to
select it.

If the folder collapses, you can click again to expand the folder and keep
it selected.

2.	 Click the New File icon just to the right of the root folder name.

It looks like a document with a plus sign (+).

3.	 Type a filename with a .py extension.

For this example, use hello.py.

4.	 Press Enter.

The filename should be visible under the root folder name, at the same level of
indentation as the .venv folder. The file opens in the editor to the right. If you’ve
enabled AI, you’ll see a prompt at the top of the new file inviting you to tell AI
what code you want to write, as shown in Figure 2-12.

If you ever need to rename or delete a file in the Explorer pane, just right-click the
filename for a shortcut menu of options. If you accidentally put a file in the .venv
folder rather than the root folder, you can simply drag the file to the root folder
name and drop it there.

FIGURE 2-12:
A file named
hello.py

added to
the project.

32 PART 1 Getting Started with Python Automation

If you don’t want to use AI to write your code, just start typing your code. For the
first example, you’ll create a Hello World script that includes a Python comment.
Follow these steps:

1.	 Click inside the editor to the right of the Explorer pane and type # My first
Hello World script.

2.	 Press Enter and type the following Python code:

print("Hello, World!")

Note that this is code so you must type it exactly as shown or it won’t work.

3.	 Press Enter.

Figure 2-13 shows how things should look now. The name of script appears in a
tab at the top of the Editor pane. The code you typed into the script appears
below that.

The print() command in Python tells Python to output something to the
Terminal when you execute (run) the script. In the example print("Hello,
World!"), we expect that line to show Hello, World! as the output. To test it,
you need to run the script, as I explain in the next section.

Running a Python script
Running a Python script is simple, and you have a couple of choices. In this
section, I describe the most common.

If you haven’t already done so, click the script filename (hello.py in the example)
to see its code in the editor. Then click Run Python File (see Figure 2-14) near the
upper-right corner of the VS Code window.

The script runs, and any output from a print() command appears in the
Terminal, such as where you see Hello, World! in Figure 2-15.

FIGURE 2-13:
A Python

comment and
some code typed

into hello.py.

CHAPTER 2 Choosing a Code Editor 33

As an alternative to using the Run Python File button, you can type python
scriptname at the command prompt in the Terminal. For example, to run
hello.py, you’d type the following in the Terminal and press Enter:

python hello.py

The script runs and displays any print() output in the usual manner.

FIGURE 2-14:
The Run Python
File button near
the upper-right

corner of
VS Code.

FIGURE 2-15:
Result of

running hello.py.

OPENING AN EXISTING PROJECT
After you’ve created a script, you don’t need to go through all these steps every time you
want to run or work with the script. In fact, all you really need to do is open the work-
space folder and activate its virtual environment. The steps are simple:

1.	 Open the script’s workspace folder in VS Code.

2.	 Choose View ➪ Terminal from VS Code’s menu bar to open the Terminal.

3.	 Activate your virtual environment: In Windows, enter .venv\Scripts\activate.
In Linux or macOS, enter .venv/bin/activate.

Make sure not to enter the period at the end.

4.	 To edit a script, click its name.

5.	 To run a script, click its name and click the Run Python File, or use the syntax
python filename.py to run the script from the command prompt in
the Terminal.

That should do the trick for any existing project.

CHAPTER 3 Python Basics for Automation 35

Chapter 3
Python Basics for
Automation

In this chapter, you discover the concepts, commands, and structures for writing
Python code. If you’re an experienced Python developer, most of this won’t be
news to you. If you’re experienced with other programming languages, the

terms and concepts will be familiar — you’ll just be learning the Python way of
doing things. And if you’re new to writing code, all of this will be new.

This one chapter isn’t a replacement for an entire book on Python. (If that’s what
you need, check out Python All-in-One For Dummies by John C. Shovic and Alan
Simpson [published by Wiley]) The goal of this chapter is to give you a quick
overview of Python and a quick reference to code you’ll see in this book’s automa-
tion scripts.

Understanding Python Comments
Python comments aren’t really Python code. Instead, they’re plain-English notes
embedded in code. Comments have no effect on how the code runs or is executed.
When writing your own code, you can include comments as notes to yourself, for

IN THIS CHAPTER

	» Commenting your code for
readability

	» Working with variables, numbers,
text, dates, and times

	» Looping and decision-making

	» Creating functions and classes

	» Handling errors and exceptions

36 PART 1 Getting Started with Python Automation

reminders about what the code is doing. Throughout this book, I use comments to
describe what’s going on and help you learn.

To type a single-line comment, start by typing #. All text to the right of the # on
the same line (only) is a comment. For example, looking at the following line, the
x=10 part is actual Python code, and the text to the right of the # is a plain-
English comment.

x=10 # Store the number 10 in the variable named x.

You can also add longer multiline comments to your code by placing the comment
text between two sets of triple quotation marks (""") or triple apostrophes ('''). For
example, all the text between the two sets of triple quotation marks is comment
text, not code:

"""

In Python, any text between triple quotation marks or triple apostrophes is

a comment.

"""

Mastering Variables and Data Types
Virtually all Python scripts (and code in other languages) use variables to store
data (information). Think of a variable as a cubbyhole in which you can store
things. Every variable in a script must have a unique name. You can make up your
own variable names, as long as you play by the following rules:

	» A variable name must start with a letter (a–z or A–Z).

	» After the first letter, a variable name can contain any letter (a–z or A–Z), any
digit (0–9), or one or more underscores (_).

	» A variable name can’t contain spaces or special characters like !, @, #, $, -,
and so on.

	» Python variable names are case-sensitive, which means myVar, MyVar, and
myvar are treated as different variables.

	» Variable names can’t match any of Python’s commands or keywords, such as
if, for, while, class, def, True, False, and so on.

Beyond the hard-and-fast rules, there are some best-practice style guidelines,
defined in PEP 8 (https://peps.python.org/pep-0008). That guide is a set of

https://peps.python.org/pep-0008

CHAPTER 3 Python Basics for Automation 37

recommendations for writing clean, readable, and consistent code. It was authored
by Guido van Rossum (Python’s creator) and others. PEP stands for Python
Enhancement Proposal, and most Python developers follow it. PEP 8 recommends
the following for variable names:

	» Use lowercase with underscores for variable names (for example,
my_variable).

	» For constants, variables whose values never change, use all uppercase
(for example, TAX_RATE).

	» Avoid starting with an underscore unless it’s for a special case (for example,
private variables in classes).

	» Use descriptive names that indicate the variable’s purpose (for example,
user_age instead of x).

There’s no strict limit on the length of a variable name, but it’s best to keep them
concise and meaningful for readability.

Each variable contains some value. Here’s an example where the variable
user_name contains the value alan:

user_name = "alan"

The value you store in a variable has a data type. Computers store different kinds
of information differently for efficiency and speed. The next sections describe
each data type and present examples of their use.

Working with numbers
Computers, as you probably know, are great for working with numbers. In Python,
there are two data types for numbers:

	» Integer (int): Whole numbers with no decimal point, such as 2, 11,
1,345, or –11

	» Floating point (float): Numbers that contain a decimal point, such as 3.12,
99.98, or –1.075. The range of values goes from 2.35x10–308 to 1.797x10308.

When typing numbers, never include a dollar sign or comma, even if the number
represents a dollar amount. For example, you must type the dollar amount
$1,234.57 as 1234.57. Your script can show the number with a dollar sign and
comma in its output. But you need to leave those out when assigning the number
value to a variable.

38 PART 1 Getting Started with Python Automation

Here are some examples of variables being assigned number values, with
explanatory comments:

quantity = 10 # integer

unit_price = 1.98 # floating-point number

sales_tax_rate = 0.065 # floating-point number

temperature = 98.6 # floating-point number

offset = -10 # integer

A number always represents some quantity and you can do math with them, such
as add, subtract, multiply, or divide.

Working with text (strings)
To store text in a variable, use the string (str) data type. The term string refers to a
string of characters; it doesn’t represent some number you would use for doing
math. You must enclose the string in single quotation marks ('') or double
quotation marks (""), so Python recognizes it as a string.

Strings are typically things like names, email addresses, product names, even
whole sentences. Here are some Python variables being assigned string values:

name = "Alice" # string

greeting = 'Hello, world!' # string

email_address = "someone@somewhere.com" # string

message = 'Please insert a USB drive to continue.' # string

When typing your own code, it doesn’t matter if you enclose a string in single or
double quotation marks. Python will treat it as a string either way. However, the
PEP 8 guidelines recommend you use one or the other consistently throughout
any given script for consistency and readability.

If the string itself contains a single or double quotation mark, like the word don’t
(the apostrophe is the same as a single quotation mark), that could cause an error
because it looks like the string ends at the apostrophe:

warning = 'Don't do that!' # Three single quotation marks confuses Python.

There are two ways around this problem. If you enclose the string in double quo-
tation marks, there’s no conflict because Python “knows” the string ends at the
last double quotation mark:

warning = "Don't do that!"

CHAPTER 3 Python Basics for Automation 39

Another way around the problem is to precede the embedded quotation marks
with a backslash. In that case, you could enclose the entire string in single quota-
tion marks because the backslash tells Python that the apostrophe is part of the
string and not the end of the string:

warning = 'Don\'t do that!' # The \' represents an embedded apostrophe.

Deciding true or false with Booleans
The Boolean (bool) data type is a value that can be True or False, and no other
value. Booleans are often used in decisions. You must type True or False with
an initial capital letter for Python to recognize it as a Boolean data type.

Though not required, it’s common to start the name of any variable that stores a
Boolean value with is_ as in these examples:

is_member = False # Boolean

is_active = True # Boolean

The is_ in front of the name signals that the variable represents a Boolean value,
which helps make your code more readable.

Using lists
A variable doesn’t always have to contain just one value. A variable can also con-
tain a list of values. The rules for defining a list are pretty straightforward:

	» The list must be enclosed in square brackets: [].

	» Each value in the list must be separated by a comma (,).

	» Values in the list can be any data type, and they don’t all have to be the same
data type.

Some programming languages use the term array to describe a list. But an array is
the same thing — a numbered list of values.

Here are examples of Python variables being assigned lists of values:

fruits = ["apple", "banana", "orange"] # list of strings

player_numbers = [11, 26, 28, 41] # list of integers

data_type_examples = [1, 3.14, "string here", False] # list of values

40 PART 1 Getting Started with Python Automation

Each item in a list has an index number or subscript, indicating its position in the
list. However, unlike normal counting, where you always start with 1, Python
starts at 0. So, in the first example, fruits[0] is "apple". In the second example,
player_numbers[1] is 26 (even though it may seem like it should be 11).

Making immutable lists with tuples
The data types I explain in the previous sections cover just about anything
you’ll ever need to do in Python or any other programming language for that
matter. But Python does have some more advanced data types, which are some-
times used in more advanced apps.

A tuple (tuple) is a data type that’s like a list, but with one big difference: Tuples
are immutable, meaning that after you define a tuple in your code, other code in
the script can’t change any values or rearrange values. To indicate that a list of
values is a tuple rather than a list, enclose the values in parentheses rather than
square brackets.

The main reason tuples exist is because the computer can work with them faster
than it can work with lists because no considerations for possible changes need to
be made. Also, tuples are secure in the sense that, after the list is defined, nothing
in the code can change the list. Here is an example of a tuple:

ny_coordinates = (40.7128, -74.0060) # map coordinates for New York

As with lists, the values in a tuple are numbered starting at 0. Even though you use
parentheses, rather than square brackets, you still use square brackets to access
items in the list. In the following code, a variable named latitude receives the value
40.7128 and a variable named longitude receives the value -74.0060:

latitude = ny_coordinates[0] # first value in tuple 40.7128

longitude = ny_coordinates[1] # second value in tuple -74.0060

Defining key–value pairs in dictionaries
A Python dictionary (dict) is another list-like structure, but instead of individual
values, a dictionary contains a list of key–value pairs. Unlike lists, which are
enclosed in square brackets, and tuples, which are enclosed in parentheses, a
dictionary is always enclosed in curly braces ({}).

Typically, the key in each pair is the name of what the value represents; the value
is a number or string assigned to that name. Use a colon (:) to separate the
key from the value. As with other list types, use a comma to separate each

CHAPTER 3 Python Basics for Automation 41

key–value pair. Here’s an example where a variable named person contains a
dictionary with key–value pairs about a person:

person = {"name": "Angela", "age": 47, "country": "USA"}

The nice thing about a dictionary is that you can tell what’s going on just by
looking at the code: In this case, the person is named Angela, she’s 47 years old,
and she lives in the United States.

To access values in a dictionary, you don’t have to deal with zero-based index
numbers. Use the key name, in square brackets, to indicate which item you want.
For example, the code stores information about a person in three separate
variables.

user_name = person["name"] # Angela

user_age = person["age"] # 47

user_locale = person["country"] # USA

Data dictionaries are often used to store data extracted from a database. The
key names in the data dictionary represent field names from a row within the
database.

Leaving things hanging with None
None is a special data type that indicates “nothing,” not even data type. It’s some-
times used to create a placeholder variable whose actual value and data type may
be determined later in code. In your code, you can use None in decision-making
(described a little later in this chapter) to determine whether a variable has been
assigned a value yet.

Let’s say you’ve built a web app that always starts with a user who isn’t logged in
yet. In your code, you could set the username variable to None, to make it clear
that no user is logged in yet:

Variable user_name no data type or value

user_name = None

Subsequent code that shows a page header can show a message to sign in if the
user hasn’t logged in yet. Otherwise, it can show Hello followed by the user’s
name, as follows:

If no logged in user, set prompt to sign in.

if user_name is None:

 prompt = ("Sign In")

42 PART 1 Getting Started with Python Automation

Otherwise, set prompt to Hello and the user's name.

else:

 prompt = ("Hello " + user_name)

I know we haven’t discussed if...else yet, so this example may be a little
advanced if you’re new to Python. But don’t worry — I explain all about
if...else in the “Making Decisions” section, later in this chapter.

Artificial intelligence (AI) knows all about Python and data types. Any time
you have a question about that, consider asking any free AI for clarification first.
You’ll get an answer immediately.

Formatting Output
When writing scripts, Python developers often use print() to output data to
the Terminal to check on things, such as the value of some data or condition. The
print statement uses the simple syntax:

print(value)

where the value is a literal string or number or a variable name. If the value is
literal text, it must be enclosed in single or double quotation marks:

print('Hello world!')

That line of code “prints” Hello World! on the screen. In the following example, a
variable named user_name is set to Wanda. The print() statement displays
Wanda onscreen because the variable named user_name is not in quotation
marks, so Python treats it as a variable name rather than literal text:

Put Wanda in a variable named user_name.

user_name = "Wanda"

Display the contents of the user_name variable.

print(user_name)

When you want to display both literal text and variable data in output, you can use
a formatted string literal, or f-string. To use such a string, put a lowercase letter f
right after the opening parenthesis after print. Inside the quotation marks, put
the literal text you want to show, with variable names enclosed in quotation
marks. For example, the following code is similar to the preceding code, but it
displays the literal text Hello there along with the user_name variable’s value
using an f-string:

CHAPTER 3 Python Basics for Automation 43

Put Wanda in a variable named user_name.

user_name = "Wanda"

Display the contents of the user_name variable.

print(f"Hello there, {user_name}!")

The output from the above code is Hello there, Wanda!

Your f-string can contain any number of variables. The following example includes
two variables, a string and a number. The f-string prints them both:

Two variables, one a string the other a number

user_name = "Wanda"

age = 25

Display the contents of the user_name variable.

print(f"Hi, {user_name}! I see you are {age} years old.")

The output from the above code is:

Hi, Wanda! I see you are 25 years old.

When displaying numbers, the output you get may not be exactly what you want.
For example the following code prints the value of pi (from Python’s built-in
math module) and a floating-point number named unit_price:

Import the built-in math module.

import math

Show the value of pi in an f-string.

print(f"Pi is equal to {math.pi}")

Now do a dollar amount.

unit_price = 12345.67

print(f"The unit price is {unit_price}")

The output from that code is the following two lines:

Pi is equal to 3.141592653589793

The unit price is 12345.67

To gain some control over the numbers (as well as strings), you can use format
directives, shown in Table 3-1, to specify exactly how you want the number to
look. In the f-string example, x represents a variable that contains the value
shown in the Example Input column. Underscores in the Output column will dis-
play as blank spaces in the output. The table also includes directives for aligning
strings with spaces and for truncating strings to a maximum length.

44 PART 1 Getting Started with Python Automation

TABLE 3-1	 Formatting Directives Used with Python f-strings
Directive Description Example Input f-String Example Output

d Integer (decimal) 42 f"{x:d}" 42

5d Integer, width 5 42 f"{x:5d}" ___42

<5d Integer, width 5 (left-aligned) 42 f"{x:<5d}" 42___

>5d Integer, width 5 (right-aligned) 42 f"{x:>5d}" ___42

^5d Integer, width 5 (centered) 42 f"{x:^5d}" _42__

03d Integer, three digits, zero-padded 7 f"{x:03d}" 007

f Float (default six decimals) 3.14159 f"{x:f}" 3.141593

.2f Float, two decimals 3.14159 f"{x:.2f}" 3.14

8.2f Float, width 8, two decimals 3.14159 f"{x:8.2f}" 3.14

<8.2f Float, width 8, two decimals, left 3.14159 f"{x:<8.2f}" ____3.14

x Integer as hexadecimal (lower) 255 f"{x:x}" ff

X Integer as hexadecimal (upper) 255 f"{x:X}" FF

o Integer as octal 8 f"{x:o}" 10

b Integer as binary 5 f"{x:b}" 101

s String (default) Python f"{x:s}" Python

10s String, width 10 (left-aligned) Python f"{x:10s}" Python____

>10s String, width 10 (right-aligned) Python f"{x:>10s}" ____
Python

.3s String, truncated to three chars Python f"{x:.3s}" Pyt

% Percentage (multiply by 100) 0.75 f"{x:%}" 75.000000%

0.10% Percentage, one decimal 0.75 f"{x:.1%}" 75.00%

, Thousands separator (integers) 1234567 f"{x:,d}" 1,234,567

,.2f Thousands separator (floats) 12345.6789 f"{x:,.2f}" 12,345.68

CHAPTER 3 Python Basics for Automation 45

Dealing with Dates and Times
Python doesn’t have a data type for working with dates and times, but it does
have powerful built-in modules to help with them. The main built-in module is
named datetime. To use it, include the following statement at the top of
your script:

from datetime import datetime

Notice that the preceding code is from datetime import datetime, rather than
just import datetime. That allows you to define a date without repeating
.datetime in the variable assignment. Had I used import datetime as the first
line of code, the second line would have needed to be dt = datetime.
datetime(2026, 11, 28, 15, 30, 0) in order to work. Not a big deal. But it’s a
common syntax, so I used it here as an example.

To get values from datetime, you typically follow variablename = with
datetime., followed by code specifying exactly what you want. For example,
take a look at the following:

from datetime import datetime

current_time = datetime.now()

print(current_time)

Running that code produces output that looks something like this, but with the
current date and time according to your computer’s internal clock:

2025-04-12 10:10:51.644321

To create your own dates and times, use the syntax datetime.date(year, month,
day). For example, this line stores 12/25/2026 in a variable named my_date:

my_date = datetime.date(2026, 12, 25) # Year, Month, Day

To specify both a date and a time use the syntax datetime.datetime(year,
month, day, hour, minute). Use the 24-hour clock for the hour (for example,
15 for 3:00 p.m.). Here’s an example where we’re setting a variable named
deadline to November 30, 2026, at 3:30 p.m.:

deadline = datetime.datetime(2026, 11, 30, 15, 30)

46 PART 1 Getting Started with Python Automation

To make dates and times easier for people to read, you can use strftime() with
the directives shown in Table 3-2. They work similarly to the f-string directives
shown in Table 3-1, but you have to put the directive inside the parentheses of
.strftime() inside the f-string. In the Code Example column, dt represents any
datetime value.

TABLE 3-2	 The Directives for .strftime() Formatting with
datetime Values

Directive Description Code Example Output Example

%Y Year with century (four digits) f"{dt.strftime('%Y')}" 2025

%y Year without century (two digits, 00–99) f"{dt.strftime('%y')}" 25

%m Month as zero-padded number (01–12) f"{dt.strftime('%m')}" 03

%B Full month name f"{dt.strftime('%B')}" March

%b Abbreviated month name f"{dt.strftime('%b')}" Mar

%d Day of month (01–31) f"{dt.strftime('%d')}" 27

%A Full weekday name f"{dt.strftime('%A')}" Thursday

%a Abbreviated weekday name f"{dt.strftime('%a')}" Thu

%H Hour (00–23, 24-hour clock) f"{dt.strftime('%H')}" 14

%I Hour (01–12, 12-hour clock) f"{dt.strftime('%I')}" 02

%M Minute (00–59) f"{dt.strftime('%M')}" 35

%S Second (00–59) f"{dt.strftime('%S')}" 22

%p AM/PM indicator f"{dt.strftime('%p')}" PM

%j Day of year (001–366) f"{dt.strftime('%j')}" 086

%w Weekday as number (0–6, where 0
is Sunday)

f"{dt.strftime('%w')}" 4

%U Week number of year (00–53,
Sunday start)

f"{dt.strftime('%U')}" 12

%W Week number of year (00–53,
Monday start)

f"{dt.strftime('%W')}" 13

CHAPTER 3 Python Basics for Automation 47

As an example, the following code sets a datetime to November 15, 2026, at
3:30 p.m.:

from datetime import datetime # Import the datetime class

dt = datetime(2026, 11, 28, 15, 30, 0) # No need for datetime.datetime

print(dt)

print(dt.strftime('%B %d, %Y %I:%M%p'))

The output is as follows:

2026-11-28 15:30:00

November 28, 2026 03:30PM

The first line shows how the datetime looks if you don’t use any formatting. The
second line shows the output with the strftime() formatting.

Manipulating Data with Operators
Python contains all the operators you’d expect to find in any programming
language. If you need more information for any operator in this section, you can
ask AI or refer to the official Python documentation at the www.python.org.

Using arithmetic and string operators
By far, the most-used operators are the arithmetic and string operators, shown
in Table 3-3. These operators are used for addition, subtraction, multiplication,
division, exponentiation, and string concatenation. The order shown in the
table is also the order of operations, as defined in standard math. You may have
learned it as PEMDAS (Parentheses, Exponents, Multiplication, Division, Addition,
Subtraction) in school.

Directive Description Code Example Output Example

%c Locale’s date and time representation f"{dt.strftime('%c')}" Thu Mar 27
14:35:22 2025

%x Locale’s date representation f"{dt.strftime('%x')}" 3/27/2025

%X Locale’s time representation f"{dt.strftime('%X')}" 14:35:22

%% Literal % character f"{dt.strftime('%%Y')}" %Y

https://www.python.org/

48 PART 1 Getting Started with Python Automation

Operators that have the same order of operations are executed left to right in an
expression. The + operator, when used with strings, simply joins the strings
into one string. For example, in the following example, the user_name variable
contains Sarah. That’s then joined to the string "Hello, " (which includes a
space at the end), to form a new string named Greeting that contains Hello, Sarah.

Combining strings with the + operator
user_name = "Sarah"

greeting = "Hello, " + user_name
print(greeting)

People sometimes use Please Excuse My Dear Aunt Sally (PEMDAS) as a
mnemonic for memorizing order of operations. PEMDAS stands for parentheses,
exponents, multiplication, division, addition, subtraction, which is the order in
which operations should be performed.

Using assignment operators
Use Python assignment operators to assign values to variables. Earlier, I provide
examples of using the = operator to assign a value to a variable. For example,
user_name = "Sarah" assigns the string value Sarah to a variable named
user_name. Table 3-4 shows the assignment operators. In the Example column,
the semicolon separates two separate lines of code. The Result column shows the
result of executing both lines of code.

TABLE 3-3	 Arithmetic and String Concatenation Operators
Precedence Operator Description Example Result

1 () Parentheses (grouping) (2+3)*4 20

2 ** Exponentiation 2**3 8

3 * Multiplication 2*3 6

3 / Division 6/2 3

3 // Floor division 7//2 3

3 % Modulus (remainder) 7%2 1

4 + Addition 2+3 5

4 + String concatenation 'a'+'b' 'ab'

4 - Subtraction 5-2 3

CHAPTER 3 Python Basics for Automation 49

Don’t worry about understanding all the assignment operators in Table 3-4.
Many are very advanced and specialized and not used in Python automation.
I’m showing them here in the interest of being thorough. As always, AI or any
reference book can fill you in on the details of any operator.

Recognizing other operators
In addition to all those assignment operators, Python offers operators for com-
parison, like == for “is equal to,” and logical operators like “and” for country ==
"USA" and birth_year < 2000. Those operators are summarized in Table 3-5.
I know it’s a lot to take in when you’re first learning this stuff. But you don’t need
to memorize them — just refer back to this chapter if you encounter one in an
automation script presented in this book.

If you need more information on any operator, you can also ask any AI or refer to
the Python documentation at www.python.org.

TABLE 3-4	 Python Assignment Operators
Operator Description Example Result

= Assigns a value to a variable x = 5 x is 5

+= Adds and assigns x = 5; x += 3 x is 8

-= Subtracts and assigns x = 5; x -= 2 x is 3

*= Multiplies and assigns x = 5; x *= 2 x is 10

/= Divides and assigns x = 6; x /= 2 x is 3.0

//= Floor divides and assigns x = 7; x //= 2 x is 3

%= Modulus and assigns x = 7; x %= 2 x is 1

**= Exponentiates and assigns x = 2; x **= 3 x is 8

&= Bitwise AND and assigns x = 5; x &= 3 x is 1

|= Bitwise OR and assigns x = 5; x |= 2 x is 7

^= Bitwise XOR and assigns x = 5; x ^= 3 x is 6

>>= Right shifts and assigns x = 8; x >>= 2 x is 2

<<= Left shifts and assigns x = 2; x <<= 2 x is 8

https://www.python.org/

50 PART 1 Getting Started with Python Automation

TABLE 3-5	 Python Unary, Comparison, and other Operators
Category Operator Description Example Result

Unary arithmetic "+x" Unary plus (identity) "+5" "5"

Unary arithmetic "-x" Unary minus (negation) "-5" "-5"

Comparison "==" Equal to "3 == 3" "True"

Comparison "!=" Not equal to "3 != 4" "True"

Comparison ">" Greater than "5 > 3" "True"

Comparison "<" Less than "2 < 4" "True"

Comparison ">=" Greater than or
equal to

"5 >= 5" "True"

Comparison "<=" Less than or equal to "3 <= 4" "True"

Logical "and" Logical AND "True and False" "False"

Logical "or" Logical OR "True or False" "True"

Logical "not" Logical NOT "not True" "False"

Bitwise "&" Bitwise AND "5 & 3" (0101 &
0011)

"1" (0001)

Bitwise "|" Bitwise OR "5 | 2" (0101 |
0010)

"7" (0111)

Bitwise "^" Bitwise XOR "5 ^ 3" (0101 ^
0011)

"6" (0110)

Bitwise "~" Bitwise NOT
(complement)

"~5" (~0101) "-6"

Bitwise "<<" Left shift "2 << 1" (0010 << 1) "4" (0100)

Bitwise ">>" Right shift "4 >> 1" (0100 >> 1) "2" (0010)

Identity "is" Object identity (same
object)

"a = [1]; b = a; a
is b"

"True"

Identity "is not" Object nonidentity "a = [1]; b = [1]; a
is not b"

"True"

Membership "in" Membership
(contained in)

"'a' in 'abc'" "True"

Membership "not in" Nonmembership "'x' not in 'abc'" "True"

CHAPTER 3 Python Basics for Automation 51

Getting Loopy with Loops
Loops are common in all programming languages. They’re used to repeat one or
more lines of code multiple times. You can use them to access items in a list one
at a time, folders on a drive, or files in a folder. Python provides two main types of
loops: for loops and while loops.

Looping with for
The for loop is useful when counting or when there is a known number of items to
iterate over. The loop executes a block of code for each item in the sequence. The
syntax is as follows:

for variable in sequence:

 # Code to repeat

Replace variable with a variable name of your choosing. This value keeps count
with each iteration of the loop. Replace sequence with the name of the list or
collection of items to loop through. The colon (:) marks the start of the loop
block, and indentation defines what code belongs inside the loop. Indentation
is critical, because only the code that’s indented under the for statement is
repeated for each loop iteration. The first un-indented line under for isn’t
executed until the looping is completed.

Here’s an example where I define a list of three values and then use a for loop to
go through the list and print each item on a separate line:

Define a list and loop through the list.

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

 print(fruit)

With Python automation, you’re more likely to loop through all files in a folder, or
something similar. Here’s an example where the folder_path variable indicates
the location and name of a hypothetical folder. Then the for loop iterates through
each file in the folder and displays its name. The script imports the built-in
pathlib module, which contains the code to allow such looping to work.

from pathlib import Path

Specify the directory path (you can change this to your desired directory).

directory = Path(r"C:\Users\Alan\Documents\Practice") # Windows example

#directory = Path("/Users/Alan/Practice") # Mac example

52 PART 1 Getting Started with Python Automation

Loop through all files in the directory.

for file_path in directory.iterdir():

 if file_path.is_file(): # Check if it's a file (not a directory).

 print(f"Found file: {file_path.name}")

Looping for a while
The while loop repeats a block of code as long as a condition is true. It’s like
saying, “Keep doing this until something changes.” There is no variable keeping
track of how many times you’ve gone through the loop, so you don’t want to use
this loop where counting is required. The syntax of the while loop is:

while condition:

 # Code to repeat

The condition statement can be anything that evaluates to either True or False.
The loop runs for as long as the condition remains True. All code that’s indented
below the while line is executed with each pass through the loop. When the con-
dition evaluates to False, the loop stops and code execution resumes at the first
non-indented line of code below the loop.

If the condition never evaluates to False, the script will get stuck in an infinite
loop. If you find yourself in that predicament, press Ctrl+C to cancel the loop. You
may have to press Ctrl+C a few times.

A while loop can be used to repeatedly ask a user for input until some condition is
met. In the following example, a prompt asks the user to enter a number between
1 and 10. If the user ignores the prompt and enters something else, the loop keeps
asking until the user complies with the requests (or presses Ctrl+C to bail out of
the loop):

Start with user_input at some number that's not between 1 and 10.

user_input = 0

Loop until the input is a number between 1 and 10.

while user_input < 1 or user_input > 10:

 try:

 # Get input from the user and convert it to an integer.

 user_input = int(input("Enter a number between 1 and 10: "))

 except ValueError:

 # Handle non-numeric input (for example, letters or symbols).

 print("Invalid input! Please enter a valid number.")

After the loop ends, confirm the valid input.

print(f"You entered a valid number: {number}")

CHAPTER 3 Python Basics for Automation 53

The try: and except: statements in the sample code are covered in the
“Handling Exceptions” section, later in this chapter.

Bailing out of loops
Though rarely needed, Python offers three special keywords for bailing out of
loops before the loop ends naturally or for detecting whether a loop completed
naturally:

	» break: Exits the loop immediately.

	» continue: Skips the rest of the current iteration and moves to the next one.

	» else: Runs a block of code when the loop finishes normally (not when
break is used).

Use the break statement with an if condition to break out of a loop if some
condition is met. In the following example, the fruits variable contains some
fruit names, one of which is an empty string (""). The sample code breaks out of
the loop when it encounters such a string.

A list of fruit names

fruits = ["Apple", "Banana", "", "Grape"]

Print the list of fruits.

for fruit in fruits:

 if fruit=="":

 break

 print(fruit)

print("All Done")

The output from that code is:

Apple

Banana

All Done

The continue statement also works with an if condition. However, instead of
stopping the loop, it simply avoids executing the code at that pass through the
loop. For example, the following code is identical to the preceding code, but it uses
continue in place of break:

A list of fruit names

fruits = ["Apple", "Banana", "", "Grape"]

Print the list of fruits.

54 PART 1 Getting Started with Python Automation

for fruit in fruits:

 if fruit=="":

 continue

 print(fruit)

print("All Done")

Unlike with break, this code skips over printing the null string, but continues on
with the rest of the items in the list before exiting. So, the output is as follows:

Apple

Banana

Grape

All Done

The else keyword doesn’t stop a loop from executing. Instead, if the for loop
iterates through all its items and doesn’t encounter a break, the code in the else
block runs. If the loop is exited prematurely with a break, the else block is
skipped. This can be useful for scenarios where you want to confirm that a loop
completed fully or to handle a “not found” case after searching through
a sequence.

numbers = [1, 2, 3, 4, 5]

target = 6

for num in numbers:

 if num == target:

 print(f"Found {target}!")

 break

else:

 print(f"{target} not found in the list.")

When executed, the preceding code displays 6 not found in the list because
the break condition never happened, because the number 6 is not in the list.

Here’s the same code where the condition is met because the number 3 is
in the list.

numbers = [1, 2, 3, 4, 5]

target = 3

for num in numbers:

 if num == target:

 print(f"Found {target}!")

 break

else:

 print(f"{target} not found in the list.")

CHAPTER 3 Python Basics for Automation 55

When executed, this code shows Found 3! because the number 3 is in the list. The
loop also stops searching right after it finds 3. It’s an efficient way to search a list,
because the loop doesn’t need to analyze every item in the list before determining
whether the 3 is found.

Indentation is critical in Python, and none of the loops above will work unless the
code is properly indented. Code that executes inside a loop must be indented under
the for statement, and code that executes when the if condition proves true must
be indented under the if statement.

Making Decisions
Virtually all Python scripts involve decision-making (also called branching) so
code only executes under certain conditions. Python offers three main tools for
decision-making: if...else, ternary operator, and a match (as of version 3.10 of
Python). You’ll mostly use comparison and logical operators (refer to Table 3-5)
to define a condition that evaluates to either True or False.

Deciding with if. . .else
The most common way to make decisions in Python is the if...else block of
code. Indentation is critical in these blocks. Code that’s indented under an if
statement executes only when the if condition proves true. Code indented under
an else statement executes only when the if condition proves false.

Let’s start with a simple example where a variable named age receives some
numeric value. In the code below, the if statement prints one thing if age is greater
than or equal to (>=) 18. Otherwise, it prints a different message.

Define a variable and assign a number.

age = 18

Make a decision based on the value in the age variable.

if age >= 18:

 print("You can vote!")

else:

 print("You're too young to vote.")

That code illustrates the importance of indentations in Python. The text "You can
vote!" displays only if the age variable contains a number that’s greater than or
equal to 18. If the age value is less than 18, then the else condition is true and the
text "You're too young to vote." shows.

56 PART 1 Getting Started with Python Automation

Sometimes if...else may not be enough, because there are more than two
possible outcomes. That’s where the elif statement comes into play. As you may
have guessed, elif is short for else if. Each elif statement can have its own
condition that proves either True or False. The final else statement only
executes if none of the elif conditions proves True.

Once again, indentations are critical for the code to work properly. As soon as
one if or elif statement proves True, no other conditions are considered. Code
execution resumes at the next un-indented line under the if...elif...else
block. Here’s an example:

Define a variable named score and give it a numeric value between 0 and 100.

score = 92

Assign a letter grade to the score based on the following rules:

if score >= 90:

 print("Grade: A")

elif score >= 80:

 print("Grade: B")

elif score >= 70:

 print("Grade: C")

elif score >= 60:

 print("Grade: D")

else:

 print("You have failed the exam.")

The following code is outside the if...elif...else block.

print("Thanks for playing!")

When executed, only the if or one elif or the else statement will execute. The
last line of code isn’t indented under else so that line executes no matter what.

Compacting decisions with a
ternary operator
The Python ternary operator is a compact way to write simple if...else state-
ments in one line. You cannot use elif conditions. But it’s great for assigning
values based on a condition. The basic syntax is:

variable = value_if_true if condition else value_if_false

The following code assigns values to two variables — one named age and the
other named status. The status variable gets its value from a ternary operator
that assigns a value of "adult" if the age is greater than or equal to 18. Otherwise,

CHAPTER 3 Python Basics for Automation 57

status gets a value of "minor". So, it works the same way as if...else, but
it’s very compact and it executes in a single line of code. There’s no need for
indentations because it’s just one line of code.

The age variable gets a numeric value.

age = 20

The status variable gets a string value dependent on the age variable's value.

status = "adult" if age >= 18 else "minor"

print(status)

Deciding with match
Python version 3.10 added the match statement as another way to handle
decision-making when there are multiple possibilities. The match statement is a
block of code that starts with match followed by a variable name. Below that are
generally two or more indented case statements followed by values and a colon.
Indented below each case statement is one or more lines of code that execute
only if the value in the case statement matches the value of the variable.

At the bottom of the match block you can use case _: — the underscore repre-
sents a wildcard that matches anything that wasn’t already covered in a previous
case. It’s like an else that executes only if none of the previous case statements
proved true.

The following code shows a relatively simple example in which the day variable
contains a number between zero and six:

Define a variable named day and assign it number 0-6.

day = 6

match day:

 case 1:

 print("Monday")

 case 2:

 print("Tuesday")

 case 3:

 print("Wednesday")

 case 4:

 print("Thursday")

 case 5:

 print("Friday")

58 PART 1 Getting Started with Python Automation

 # The following case executes only if no previous case proved true.

 case _:

 print("Weekend")

You can use comparison and logical operators from Table 3-5 to set up more
complex conditions. For more compact code, use the Bitwise ampersand (&) for
and and the Bitwise pipe (|) for or.

The following code shows an example where the first case statement
proves True if the day variable contains a weekday (Monday, Tuesday, Wednesday,
Thursday, or Friday). The second case statement proves True if the day
variable contains Saturday or Sunday. The wildcard case statement with the
underscore (_) proves True if no previous case statement proved True. The day.
lower() expression makes the day name all lowercase to match the letters in
the case statements.

Assign a day name (string) to the day variable.

day = "Tuesday"

Make a decision based on the day value converted to lowercase.

match day.lower():

 # The pipe operator (|) represents "or."

 case "monday" | "tuesday" | "wednesday" | "thursday" | "friday":

 print("Weekday")

 case "saturday" | "sunday":

 print("Weekend")

 case _:

 print("I don't recognize that day")

Any code from this point on is outside the match block.

Defining Python Functions
Much of the Python code you encounter will be organized into Python functions.
Functions are a fundamental tool in programming, allowing you to write reusable,
organized, and efficient code. A function is a block of code that performs a specific
task and can be reused whenever needed. Think of it like a recipe: You define the
steps once, and then you can use it anytime without rewriting everything.

In Python, functions are defined using the def keyword. Here’s the basic structure:

def function_name(parameters):

 # Code block (what the function does)

 return result # Optional: Returns a value

CHAPTER 3 Python Basics for Automation 59

The word def is short for define, and it tells Python to treat the following code as
a function. The code isn’t executed immediately. Instead, other code in the script
can call the function at any time to execute its code.

The function_name part is a name you make up. Use lowercase letters and under-
scores instead of spaces. The name should describe what the function does, such
as calculate_area or authenticate_user.

The parameters are optional and are names of variables that can receive data
when the function is called.

The return statement marks the end of the function. The result is optional; it’s the
name of a variable that contains any data sent back to the code that called the
function. If you omit result, the function returns None).

As with other blocks of code, indentations are critical. All code that’s part of
the function, including the return statement, must be indented below the initial
definition def statement.

Subsequent code in your script can call the function by name followed by
parentheses.

Most functions accept one or more parameters as input. Code within the function
then performs some operation on that input and returns a single value as the
result. Here’s an example where a function named calculate_area accepts two
values: width and height (presumably of a rectangle). Code inside the function
then multiplies width and height to calculate the area of the rectangle and stores
it in a variable named area. The value of area is then returned to the calling code
in the last line, return area.

A function to calculate and return the area of a rectangle

def calculate_area(width, height):

 area = width * height

 return area

After it’s defined, subsequent code can call the function, pass values into its
parameters, and store the result in a variable. The following code calls the
calculate_area function, passing in the values 5 and 10, and then storing the
result in a variable named rectangle_area.

Calling the calculate area function.

side_a = 5

side b = 10

rectangle_area = calculate_area(side_a, side_b)

60 PART 1 Getting Started with Python Automation

Functions are used heavily in most Python code, because they allow a large script
to be broken down into smaller, more manageable chunks.

Defining default values for parameters
You can define default values for parameters. The default is used if you call the
function without providing a value for a parameter. Here’s an example where the
default value for a variable is set to the string "friend":

def greet(name="friend"):

 greeting = "Hi, " + name
 return greeting

Here’s an example of calling the function, and providing the value "John" for
the parameter:

print(greet("John"))

The result of executing that code is:

Hi, John.

Here’s an example where I don’t pass in anything for the parameter. Note that you
still have to include the parentheses as in greet(). You just don’t put anything
inside the parentheses:

print(greet())

That code displays:

Hi, friend

The default value is used in place of the missing parameter value.

Using type hints in Python functions
Python also allows you to use type hints in function definitions. These are mainly
informative to people reading the code to understand what to pass into the func-
tion or what the function returns. Use a colon followed by a type name inside the
parameter list to indicate a data type for parameters. Use an arrow (formed by
typing a hyphen and a tight angle bracket) to indicate the data type of what the
function returns.

CHAPTER 3 Python Basics for Automation 61

For example, in the following function, quantity is expected to be an integer,
and unit_price is a floating-point number. The function returns a floating-
point number:

def calculate_total(quantity: int, unit_price: float) -> float:

 return quantity * unit_price

To keep large apps organized and easy to understand, it’s best for each function to
perform a single task and return only one value or no value at all. You’ll see many
examples throughout this book. The main point being: Keep functions simple to
make even the largest apps into collections of relatively simple chunks of code.

Creating Classes and Objects
Functions are one way to organize code. Classes are another. In coding we use
classes to manage objects. An object is a unit of information about one item. For
example, an object representing a user of an app may include data about that
user’s username (user_name), email address (email_address), enrollment date
(date_enrolled), login status (is_logged_in), and other information. Keeping
all that information associated with the user as a single object makes it easier to
keep track of and manage the user data.

A class is a chunk of code that allows you to create objects. For example, to have
user objects in your app, you’d define a User class that defines exactly what data is
associated with each user. The class also allows you to create user objects. The
class can also contain methods, which are like functions, but designed specifically
for use with user objects.

Organizing code into classes is sometimes called object-oriented programming
(OOP). You may have already heard that term in relation to other programming
languages such as Java.

Classes in Python are defined using the class keyword. Unlike variables, the name
of a class usually starts with an uppercase letter. A class is like a factory used to
create objects. Within a class, you define a constructor, which lets you define which
variables, called instance variables (or properties), to associate with each object. You
can define functions inside a class. However, these functions are accessible only to
objects that you create using the class; they’re called methods to distinguish them
from regular functions.

Here’s a sample class named User that says each user will have a user_name,
email_address, and date_joined. The class contains one method, which, when

62 PART 1 Getting Started with Python Automation

called, returns a string showing the instance variables (properties) for one user.
Note that all the code contained within the class, including the method definition,
must be indented within the class.

class User:

 # Constructor method (initializer)

 def __init__(self, user_name, email_address, date_joined):

 self.user_name = user_name # Instance variable

 self.email_address = email_address

 self.date_joined = date_joined

 # Method

 def info(self):

 return f"{self.user_name}, {self.email_address} joined {self.

date_joined}"

A User class could contain a lot more information about each user, including
address, phone number, and other information. I’m keeping the example simple
here to show you how to code a class and to help you recognize classes in other
people’s code.

For the sake of example, let’s suppose that User class is stored in a file named
user.py. You want to be able to create user objects from another file, which I’ll
call main.py for this example. The following code shows how you could create a
user object from main.py. First, import the User class from user.py (the .py is
assumed after from user in the code). Then use the correct syntax to create a new
user named new_user. To test the code, the script then called the .info() method
of the class to print information about the new user.

Import the User class from user.py

from user import User

from datetime import date

Create a new user named Mary with an email and today's date

new_user = User("Mary","someone@somewhere.com",date.today())

Print the new user's information

print(new_user.info())

CHAPTER 3 Python Basics for Automation 63

Handling Exceptions
No matter how good your code is, people using your code can make errors that
could potentially crash your script. For example, perhaps your code asks the user
for a number. But the user inputs a string instead. Such a simple error could stop
your script in its tracks and display some arcane technical error message to
your user.

Handling errors that could cause your script to crash is called exception handling.
The technique allows your script to keep running smoothly and hide any technical
error messages from your user.

Use try, except, else, and finally keywords to handle exceptions in your code.
Here’s the basic structure:

	» try: The block of code you want to monitor for exceptions

	» except: The block that runs if a specific exception occurs, specifying how
to handle it

	» else (optional): Runs if no exception occurs in the try block

	» finally (optional): Runs no matter what, whether an exception occurred or not
(useful for cleanup tasks)

Also related to exception handling, but not limited to being inside a try block is
the raise keyword, which explicitly raises (triggers) an exception in your code.
It allows you to signal that an error or exception condition has occurred. You can
raise built-in exceptions or custom exceptions defined in your own code. Python
has about 30 built-in exceptions, including the following:

	» TypeError: Raised when an operation or function is applied to an object of
inappropriate type (for example, adding a string and an integer).

	» ImportError: Raised when an import statement fails to find or load a module.

	» ModuleNotFoundError: Raised when a module cannot be found (for example,
 import nonexistent_module).

	» FileNotFoundError: Raised when a file or directory is requested but doesn’t
exist (for example, open("missing.txt")).

	» PermissionError: Raised when an operation lacks sufficient permissions
(for example, trying to write to a read-only file).

	» EOFError: Raised when trying to read beyond the end of a file or input stream.

64 PART 1 Getting Started with Python Automation

	» ValueError: Raised when a function gets an argument of the right type but
an inappropriate value (for example, int("abc")).

	» Exception as e: Catches any exception and stores the exception object in a
variable named e. Use print(f"An error occurred: {e}") to display the
error object text.

Custom exceptions are classes you create yourself using the class keyword and
(Exception). The syntax for defining such a class is:

class Exceptioname(Exception):

Replace Exceptioname with a name of your own choosing (as long as it doesn’t
match any of the existing built-in exception names). As with regular classes,
Python suggests using an initial uppercase letter in the class name to identify the
code as a class. The word Exception in parentheses means your class will inherit
the capabilities of all exceptions from the Exception class that’s built into the
Python language.

Using exception handling in scripts is a best practice for writing Python scripts.
You’ll see many examples throughout the automation scripts in this book.

The following script asks the user to enter two numbers. The try block checks
for various errors and displays appropriate error messages so that the script can
keep running without crashing, regardless of what the user enters.

Function to ask for two numbers, handle exceptions, and divide.

def divide_numbers():

 try:

 # Get input from user

 num1 = input("Enter the first number: ")

 num2 = input("Enter the second number: ")

 # Convert user entries to floats

 number1 = float(num1)

 number2 = float(num2)

 # Perform division

 result = number1 / number2

 # Handle exception if user inputs non-numeric values.

 except ValueError:

 print("Error: Please enter valid numbers")

 return None

CHAPTER 3 Python Basics for Automation 65

 # Handle exception if second number is zero.

 except ZeroDivisionError:

 print("Error: Cannot divide by zero")

 return None

 # Handle any other exceptions that may occur.

 except Exception as e:

 print(f"Unexpected error occurred: {str(e)}")

 return None

 # This block executes only if no exceptions occur.

 else:

 print(f"The division was successful!")

 return result

 # This block always executes, regardless of exceptions.

 finally:

 print("Calculation attempt completed")

Main function to run the division calculator function.

def main():

 print("Welcome to the Division Calculator!")

 result = divide_numbers()

 if result is not None:

 print(f"Result: {result}")

 print("Thank you for using the calculator!")

Call the main function to start the program.

if __name__ == "__main__":

 main()

Here’s how the script works:

	» try: Contains the code that may raise exceptions. In this example, the try
block asks the user to enter two numbers. Then the code attempts to convert
whatever the user entered into two floating-point numbers and perform
division on them.

	» except: Handles specific exceptions that may occur:

•	 ValueError: Raised if the user enters a value that can’t be converted to a
float (such as a string).

66 PART 1 Getting Started with Python Automation

•	 ZeroDivisionError: Raised if the second number is zero.

•	 Exception: Raised for any other unexpected error.

	» else: Executes only if no exceptions occur. Prints a success message and
returns a result.

	» finally: Executes no matter what. Prints a completion message.

The script contains a second function named main() that displays a welcome
message and then calls the divide_numbers() function. Whatever that function
returns is stored in a variable named result. If result is anything other than
None, that result is displayed. Then, no matter what, the script shows the text
"Thank you for using the calculator!"

The very last block calls the main() function, which, in turn, runs the entire script.

Throughout Python, you’ll see variable names and values that start and end with
double underscores like __init__ and __name__ and __main__. These are
sometimes called dunder names (dunder being short for double underline). They’re
built-in variable names that have special meaning in Python. The common use of
them is this statement, shown near the end of the previous sample code:

if __name__ == "__main__":

__name__ is a special, built-in variable that automatically gets its value when you
run Python code. In a script that you run directly (for example, using the Run
Python File icon in VS Code or a python command followed by the script’s
filename), the __name__ variable gets the value __main__.

In code that’s imported into a script with an import statement, the __name__
variable gets the value of the imported module’s name, never __main__. Using
if __name__ == "__main__": ensures that any code indented below the if
statement is executed only when that script is executed directly, not when it’s
imported into another script that was run directly.

The last code example in this chapter is typical in that it allows you to organize
code into functions, each of which performs a specific task and returns a value.
Then it calls functions, as needed at the end, but only if the current script was run
directly and not imported as a module via import statements.

2Automating
Common
Computer Tasks

IN THIS PART . . .

Automate and organize files and folders.

Back up files, find duplicates, and delete old files.

Manage files for images and videos.

Automate the mouse, the keyboard, and typing text.

Automate the office and office apps.

CHAPTER 4 Automating Files and Folders 69

Chapter 4
Automating Files
and Folders

Many automation scripts save you time and effort by navigating through
folders and files to make changes to files. Python offers many tools and
techniques for working with directories (folders) and files. Three modules

are key:

	» os: Provides ways to interact with the operating system (Linux, macOS,
Windows) including navigating folders and files, and working with paths
and environment variables

	» shutil: Utilities for copying, moving, renaming, and deleting folders and files

	» pathlib: Provides a newer, object-oriented way to work with folders and files,
making it easier to create scripts that work on any operating system

These modules are part of the standard library, which means they’re built in.
When you want to use any of these modules, you don’t need to pip install them.
Instead, just put your import statement(s) right at the top of your code.

Note: Like the rest of the world, I use the terms directory and folder interchange-
ably, because they mean the same thing: a container for storing files.

IN THIS CHAPTER

	» Talking the talk

	» Playing it safe with automation
scripts

	» Walking through directory trees

	» Grouping files according to file type

	» Batch file naming

70 PART 2 Automating Common Computer Tasks

Demystifying the Buzzwords
Most people probably use File Explorer in Windows or Finder on macOS to work
with files and folders.

In Windows, File Explorer directories are indicated by manila file folder icons
(hence, the name folder). In the File Explorer navigation pane, built-in folders like
Desktop, Downloads, Documents, Pictures, and Videos may not look like folder
icons, but those are all folders.

Files are indicated by document icons, or by a thumbnail image if the file is an
image or video. The path to the current folder is shown in the Address Bar at the
top of the window in a friendly format, such as Alan Simpson > Documents > Practice
(see Figure 4-1).

If you click after the last named folder in the Windows Address Bar’s friendly
path, you’ll see the path converted to a format more suitable for writing code. So,
typically, you can just copy and paste that path into your code — though, in
Python, you’ll have to change it a little, as I explain in the “Drives, directories,
folders, and files” section, later in this chapter.

On macOS, you use Finder to navigate folders and files. Directories are indicated
by folder icons. Files are indicated by document icons or a thumbnail image for
images and videos. The path to the current folder is displayed near the bottom of
the Finder window, such as Macintosh HD > Users > alan > Practice (see Figure 4-2).
That path is a little misleading because, from Python’s perspective, the actual path
is Users/username/Practice.

FIGURE 4-1:
Windows

File Explorer.

CHAPTER 4 Automating Files and Folders 71

Folders under iCloud in Finder’s navigation pane are read-only in relation to
Python code. So, if you’re on a Mac, you’re better off creating your Practice
folder under your username under Macintosh HD. Copy the files you intend to
modify to that Practice folder first, for safety. The path to a folder named
Practice under your username will look like /Users/Alan/Practice without
Documents as part of the name.

Drives, directories, folders, and files
Working with files and folders in code requires working with paths. A path is the
path required to get to a certain file or folder. For example, in Windows, a path
may look something like this:

C:\Users\Alan\Documents\Practice\photo.jpg

The path above refers to a file named photo.jpg. To get to that file you need to
navigate to the C: drive, and then down through the folders named Users, Alan,
Documents, and Practice.

In a Windows path, the C: is the disk drive (the actual storage device). The names
that follow, separated by backslashes (\), are folder and subfolder names. If the
path leads to a specific file in the last folder, the filename is at the end of the path.
The filename always ends with an extension, like .jpg, to indicate the file type and
to differentiate it from a folder name.

FIGURE 4-2:
macOS Finder.

72 PART 2 Automating Common Computer Tasks

In Linux and macOS, paths omit the drive name and just start with a folder
name. On macOS, I recommend putting your Practice folder under your user-
name, rather than in the Documents folder, because the Documents folder under
iCloud is read-only to Python. Use forward slashes (/) rather than backslashes
to separate folder names in the path. If the path is to a specific file, the filename
comes last in the path, and it always has a filename extension. Here’s an exam-
ple of a path on macOS:

/Users/Alan/Practice/photo.jpg

You don’t need a drive letter like C:, because the path always refers to the main
startup disk (named Macintosh HD in Finder, by default).

When you right-click a file in any folder and choose Get Info in Finder, you’ll see
a path like Macintosh HD > Users > username > Practice (it’s in the General
section, next to Where). Right-click that path and choose Copy As Pathname. The
Clipboard will contain the proper path, so when you paste it into your code, it will
be the correct pathname for your code in the format /Users/username/Practice.

For Linux, you usually start the path with /home which is the root (top) folder of
the entire directory tree. Unlike on macOS, there’s rarely a Users subfolder in
Linux. So, the Linux path will look more like this:

/home/Alan/Practice/photo.jpg

Absolute versus relative paths
All the paths shown in the preceding section are absolute paths, because they all
start at the top of the directory tree, indicated by / on macOS and Linux, and by
C:\ in Windows.

In Python, you can use relative paths, which are always expressed relative to the
current working directory. Two symbols are used for relative paths:

	» .: Refers to the current working directory

	» ..: Refers to the parent of the current working directory

For example, if the current working directory in Windows is C:\Users\Alan\
Documents\Practice:

	» . refers to C:\Users\Alan\Documents\Practice

	» .. refers to C:\Users\Alan\Documents

CHAPTER 4 Automating Files and Folders 73

If the current working directory on macOS is /Users/Alan/Practice:

	» . refers to /Users/Alan/Practice

	» .. refers to /Users/Alan

Backslashes in Windows paths
Windows paths use single backslashes to separate folder names and filenames in
paths. Python uses the backslash in strings as an escape character, giving special
meaning to the character that follows the backslash. Here are some examples:

Code Description

\n Newline (ends the current line, or inserts a blank line when used alone)

\t Tab (inserts a tab character)

\" A literal quotation mark embedded in a string

\' A literal apostrophe (single quotation mark) embedded in a string

\\ A literal backslash embedded in a string

In Python code, use \\ as a separator in a string like the following, when you’re
storing a variable:

path = "C:\\Users\\Alan\\Documents\\Practice"

Optionally, you can define the string as a raw string by prefixing the first quota-
tion mark with a lowercase r like this:

directory = r"C:\Users\Alan\Documents\Practice"

If you’re using pathlib, you can pass the variable directly into pathlib.Path
without worrying about the backslashes. In the preceding example, the Windows
path is stored in a variable named directory. If you import Path from pathlib,
you can write:

from pathlib import Path

directory = r"C:\Users\Alan\Documents\Practice"

directory = Path(directory)

74 PART 2 Automating Common Computer Tasks

With pathlib, you can also specify Windows paths using forward slashes,
like this:

directory = Path("C:/Users/Alan/Documents/Practice")

You’ll see that used throughout the scripts in this chapter.

Playing It Safe
Some scripts in this chapter delete or rename files in ways that you can’t
easily undo. So, it’s a good idea to always work with a Practice folder that
contains copies of files. If you make a mess of things, there’s no loss. All your
original files and folders will still be intact in their original location.

Throughout this book, I use a folder named Practice. On Windows, I put it in the
Documents folder for easy access. So, the path, in Windows is:

C:\Users\Alan\Documents\Practice

On macOS, I’m not using Documents because it syncs to iCloud and can’t be
written to from Python without changing permissions. When working with
scripts that change files, you want to play it safe and minimize the impacts
of any unforeseen errors. So, on a Mac, I put the Practice folder under my
username. The path is:

/Users/Alan/Practice

Most Linux distros don’t have a built-in Documents folder. There, I just put the
Practice folder under my username. That path in most Linux distros would be:

/home/Alan/Practice

Navigating Folders and Files
Any operation that involves file automation is likely to involve navigating
through directories and files. Python’s os and pathlib modules both provide
many tools for that. pathlib is the more modern, object-oriented tool for navi-
gating files and folders, so I focus on that for much of the work in these scripts.

CHAPTER 4 Automating Files and Folders 75

Here’s an example script that lets you pass any folder path as the starting point.
The script then shows the name of every folder and every file in each folder. The
script also shows the name of the current operating system. Admittedly, the code
doesn’t automate any tasks — it just prints the names of folders and files.
But you’re likely to use similar code whenever you write a script that automates
working with files and folders.

import platform

from pathlib import Path

def walk_directory(directory_path):

 # Convert string path to Path object if necessary.

 root_dir = Path(directory_path.strip())

 # Check if the directory exists.

 if not root_dir.exists():

 print(f"Error: Directory '{directory_path}' does not exist")

 return

 # First, show the files in the root directory.

 print(f"\n{root_dir.name}:")

 for item in root_dir.iterdir():

 if item.is_file():

 print(f" {item.name}")

 # Then walk through the subdirectories.

 for folder in root_dir.rglob("*"):

 if folder.is_dir() and folder != root_dir: # Skip the root

directory itself.

 # Print the folder name with a colon.

 print(f"\n{folder.name}:")

 # Get all the files in the current folder.

 for file in folder.rglob("*beach*"):

 if file.is_file():

 # Print the filename indented

 print(f" {file.name}")

def main():

 # Set the directory to a Windows, macOS, or Linux path.

 directory = r"C:\Users\Alan\Documents\Practice"

 # directory = "/Users/Alan/Practice"

 # directory = "/home/Alan/Practice"

76 PART 2 Automating Common Computer Tasks

 # If no input, use the current directory.

 if not directory:

 directory = "."

 # Show the operating system name.

 os_name = platform.system()

 print(f"\nOperating System: {os_name}")

 print(f"Scanning directory: {directory}")

 walk_directory(directory)

 print("Done.\n")

if __name__ == "__main__":

 # Call the main function to start the script.

 main()

When you run the script on Windows, the output will look something like this, but
with your own folder names and filenames:

Operating System: Windows

Scanning directory: C:\Users\Alan\Documents\Practice

Practice:

 Photo (1).jpg

 Photo (2).jpg

 Photo (3).jpg

01 Sample Folder:

 beach (1).jpg

 beach (2).jpg

 beach (3).jpg

 beach (4).jpg

02 Sample Folder:

 biz (1).jpg

 biz (2).jpg

 biz (3).jpg

 biz (4).jpg

Done.

In this example, I used Windows and my own Practice folder. The Practice
folder contains three image files and two subfolders: 01 Sample Folder and
02 Sample Folder. Each subfolder contains four image files.

CHAPTER 4 Automating Files and Folders 77

Next, I’ll walk you through the code, explain what it does, and show you how to
adapt it to your own operating system and needs.

Near the top of the code, you see two import statements:

import platform

from pathlib import Path

I’m using the platform module just to show the operating system name in the
script. I’m using the Path class from pathlib to walk the directory tree.

Next comes the walk_directory function, which does all the work of walking
down through all the subfolders and files and printing their names. It accepts one
parameter, directory_path, which is the path to the folder at which you want to
start walking, defined later in this code.

def walk_directory(directory_path):

 # Convert string path to Path object.

 root_dir = Path(directory_path)

 # Check if the directory exists.

 if not root_dir.exists():

 print(f"Error: Directory '{directory_path}' does not exist")

 return

 # First, show files in the root directory.

 print(f"\n{root_dir.name}:")

 for item in root_dir.iterdir():

 if item.is_file():

 print(f" {item.name}")

 # Then walk through the subdirectories.

 for folder in root_dir.rglob("*"):

 if folder.is_dir() and folder != root_dir: # Skip the root

directory itself.

 # Print folder name with a colon.

 print(f"\n{folder.name}:")

 # Get all the files in the current folder.

 for file in folder.iterdir():

 if file.is_file():

 # Print the filename indented.

 print(f" {file.name}")

78 PART 2 Automating Common Computer Tasks

Any Python line that starts with a # is a comment, not actual code. The comment
is just there to tell you about the code.

The first step in the function is to convert the string passed in (stored in the
variable directory_path) to a Path object. The rest of this function then uses
root_dir to refer to that path.

Convert string path to Path object.

root_dir = Path(directory_path)

The next line checks to make sure the path exists. This prevents the script from
crashing with a Python error message in case someone provides a bad pathname.
The exception handler displays an error message and then exits the function
before it attempts to walk through a nonexistent directory:

Check if the directory exists.

if not root_dir.exists():

 print(f"Error: Directory '{directory_path}' does not exist")

 return

Assuming no error occurred, the function prints the root_dir name and then
loops through each item in that folder. The line for item in root_dir.
iterdir(): tells Python to start stepping through everything in that folder and
assign the variable name item to whatever it finds. Then if item.is_file():
checks to see if the current item is a file; if it is a file, it uses the line
print(f" {item.name}") to print the name indented a few spaces.

if item.is_file():

 print(f" {item.name}")

The next line tells Python to loop through all the folder names in root_dir. The
.rglob("*") means “Don’t filter out anything.” That rglob stands for recursive
global search, but it’s really just a way of filtering for specific items. For example,
.rglob(*folder*) would access only folders that have the word folder in
their name.

Inside the loop, the next two lines print the current folder name (as long as it isn’t
the root_dir, which was already printed) followed by the names of the files in
that folder. The if statement, if folder.is_dir() and folder != root_dir:,
makes the decision and the print statement, print(f"\n{folder.name}:"),
prints the folder name on a new line.

Then walk through subdirectories.

for folder in root_dir.rglob("*folder*"):

http://folder.name

CHAPTER 4 Automating Files and Folders 79

 if folder.is_dir() and folder != root_dir: # Skip the root directory.

 # Print folder name with a colon.

 print(f"\n{folder.name}:")

Next, a new loop starts, to iterate through all the items in the subfolder. The
loop for file in folder.iterdir(): says to refer to each item in encounters
as file, and then, within that loop, the line if file.is_file(): proves True if
the item is a file (and not another subfolder), which then allows the following
statement to print the filename indented a few spaces.

print(f" {file.name}")

The .iterdir() (iterate directory) method in the for loop will look at every
filename, with no filtering. You can replace .iterdir() with .rglob() to filter for
specific types of files, if you like. For example, for file in folder.rglob("*.
png"): would only print the names of files that have a .png filename extension.
Using .rglob("*beach*"): would print only files that have the word beach in
their filename.

That’s it for the walk_directory function. As mentioned, it only prints folder
names and filenames. But you can change it up a bit to automate folder and files
tasks. Plus, it’s designed to work with any operating system, and any starting
path you pass into it. The main() function shows different ways you can pass
in a path:

def main():

 # Optionally, set directory to a Windows, macOS, or Linux path.

 directory = r"C:\Users\Alan\Documents\Practice"

 # directory = "/Users/Alan/Practice"

 # directory = "/home/Alan/Practice"

 # If no input, use current directory

 if not directory:

 directory = "."

 print(f"Scanning directory: {directory}")

 walk_directory(directory)

 print("Done.\n")

The main() function accepts no parameters. Instead, it just allows you to define
your starting directory. In real life, it could contain two lines like:

directory = r"C:\Users\Alan\Documents\Practice"

walk_directory(directory)

80 PART 2 Automating Common Computer Tasks

The first line sets the variable directory to the name of the path you want to
walk. Then it passes that path to walk_directory. But I’ve included a lot of
commented code to show you other ways of passing in values. If you want the
script to ask you for the starting directory when you run the script, uncomment
the following line:

directory = input("Enter the directory path to walk (press Enter for current

directory): ").strip()

Make sure you comment any later lines in main() that define a path, so they
don’t override what you type in. In case you’re wondering about the .strip() at
the end of the input statement, that just strips that input of any trailing spaces
you may accidentally type in, so they don’t cause any errors in subsequent
processing.

If you don’t want to specify the path at runtime, leave that input() line com-
mented, and define your path in one of the following lines:

Optionally, set the directory to a Windows, macOS, or Linux path.

directory = r"C:\Users\Alan\Documents\Practice"

directory = "/Users/Alan/Practice”

directory = "/home/Alan/Practice"

Uncomment only one line, depending on the operating system you’re using. Then
assign your path to the directory variable using proper syntax.

For Windows, make sure you precede the string with r (short for raw string),
which tells Python not to treat the backslashes as an escape character, but
instead to accept the string as is. Linux and macOS use forward slashes, so you
don’t need to precede those strings with the r.

This next bit of code handles errors. If the directory string is empty, it sets the
directory to "." Passing ".". into walk_directory tells it to start at the current
working directory (the folder where you launched the app).

If no input, use current directory

if not directory:

 directory = "."

By now, the directory variable has a value. Before you call the main function to
walk the entire tree, these lines print the name of the operating system and the
path to the directory tree you’ll be walking:

CHAPTER 4 Automating Files and Folders 81

Show the operating system name.

os_name = platform.system()

print(f"\nOperating System: {os_name}")

Show the directory being walked.

print(f"Scanning directory: {directory}")

Show all folders and files in the directory.

walk_directory(directory)

print("Done.\n")

The function displays Done. after all the folder names it printed.

The very last bit of code then gets the whole process going by calling the main()
function, but only if you’re running the script yourself and not at a module you
imported into some other script:

if __name__ == "__main__":

 # Call the main function to start the script.

 main()

Organizing Files by Type
In this script, I’ll make changes to one folder. There’s no need to walk through
subfolders. Technically, you could write the script that way, but this script creates
a subfolder for every file type within the current folder. You probably want to work
with only one folder so as not to generate massive numbers of folders across
multiple directories as the script is running.

When you run this script, it creates a subfolder for each file type in the current
directory and moves all files of that type into the appropriate subfolder. Make sure
you test and debug with a Practice folder with copies of files you have elsewhere.
And make sure you have read/write permissions on the folder.

The folder I’ll be using is named Organize, and it’s inside the Practice folder.
The Organize folder contains copies of some Microsoft Excel spreadsheets,
Microsoft Word documents, videos, and images, as shown in Figure 4-3.

After running the script, the Organize folder will look like Figure 4-4 with four
subfolders: docx for Word documents, mp4 for videos, png for PNG images, and
xlsx for Excel spreadsheets. You can rename these folders to your liking
if you like.

82 PART 2 Automating Common Computer Tasks

For this script, I’ll add the shutil module. The name is short for shell utilities, and
it has commands for creating directories, moving and copying files, and more —
as long as you’re working in a folder where you have write permissions.

When moving or copying files, shutil will overwrite existing files without
warning. Here, I’ll only be moving files into new, empty folders, so it’s not
an issue. But make sure you don’t overwrite anything important in your own
existing folders.

First, I’ll show you the entire script. Then I’ll explain key parts in more detail.

FIGURE 4-4:
The Organize

folder after
running the

Organize script.

FIGURE 4-3:
The Organize
folder for this

script example.

CHAPTER 4 Automating Files and Folders 83

import shutil

from pathlib import Path

def organize_files(directory):

 # Convert directory to Path object for easier handling.

 dir_path = Path(directory)

 # Check if the directory exists.

 if not dir_path.exists():

 print(f"Error: Directory '{directory}' does not exist.")

 return

 # Get all files in the directory.

 files = [f for f in dir_path.iterdir() if f.is_file()]

 if not files:

 print("No files found in the directory.")

 return

 # Process each file.

 for file_path in files:

 # Get the file extension (converted to lowercase).

 extension = file_path.suffix.lower()

 # Skip files without an extension.

 if not extension:

 print(f"Skipping '{file_path.name}' (no extension)")

 continue

 # Remove the dot from the extension (for example, '.txt' -> 'txt').

 extension = extension[1:]

 # Create a new folder name based on the extension.

 new_folder = dir_path / extension

 # Create the folder if it doesn't exist.

 try:

 new_folder.mkdir(exist_ok=True)

 except Exception as e:

 print(f"Error creating folder '{new_folder}': {e}")

 continue

84 PART 2 Automating Common Computer Tasks

 # Define the new file path.

 new_file_path = new_folder / file_path.name

 # Move the file.

 try:

 shutil.move(str(file_path), str(new_file_path))

 print(f"Moved '{file_path.name}' to '{extension}' folder")

 except Exception as e:

 print(f"Error moving '{file_path.name}': {e}")

def main():

 # Specify your directory. I'm using a Windows path as an example.

 directory = r"C:\Users\Alan\Documents\Practice\Organize"

 # If you're using macOS, use a path like this:

 # directory = "/Users/Alan/Documents/Practice/Organize"

 # If you're using Linux, use a path like this:

 # directory = "/home/Alan/Documents/Practice/Organize"

 # Print an opening message, organize the files, and print a

completion message.

 print(f"Organizing files in: {directory}")

 organize_files(directory)

 print("File organization complete!")

if __name__ == "__main__":

 main()

Like most scripts, this one starts with import statements for modules the script
uses. Here, I use shutil to create directories and move files, and Path from
pathlib to navigate.

The organize_files() function does all the work. It accepts one parameter
named directory, which is the string specifying the path to the directory in
which to work.

def organize_files(directory):

Inside the organize_files() function, the directory string is converted to a
Path object named dir_path, which ensures the path is in the proper format for
Python. An if statement then checks whether the path exists. If the path does not
exist, a print() statement displays an error message, and a return statement
exits the function before attempting to do any further work.

CHAPTER 4 Automating Files and Folders 85

Convert directory to Path object for easier handling.

dir_path = Path(directory)

Check if the directory exists.

if not dir_path.exists():

 print(f"Error: Directory '{directory}' does not exist.")

 return

Assuming we haven’t exited the function, the next lines create a list named files
containing all the files in the current directory. If there are no files, then the list
will be empty. The block that begins with if not files: will print an error
message and exit the function because there are no files to work with:

if not files:

 print("No files found in the directory.")

 return

Assuming we make it through the error trapping, this next loop goes through each
file in the folder. For each file, it first grabs the filename extension and stores
that, in lowercase letters, to a variable named extension:

Process each file

for file_path in files:

 # Get the filename extension (converted to lowercase).

 extension = file_path.suffix.lower()

Then we set up an if statement to ignore any filenames that don’t have an exten-
sion. But if the file does have an extension, we remove the dot, so in the script the
extension name is just txt or png or whatever, without the dot:

Skip files without an extension.

if not extension:

 print(f"Skipping '{file_path.name}' (no extension)")

 continue

Remove the dot from the extension (for example, '.txt' -> 'txt').

extension = extension[1:]

Next, we create a path to a folder that has the same name as the filename
extension:

Create a path to a possible new folder name based on the extension.

new_folder = dir_path / extension

86 PART 2 Automating Common Computer Tasks

If this line looks unusual, remember that the code is using pathlib. The
/ operator with a pathlib object intelligently joins dir_path and extension to
form a valid file path.

Using mkdir for subfolders
So far, the script has done a lot of work picking apart text to come up with a folder
name, such as png for PNG files. So, how and when does it actually create the
subfolder? It does so in the next try block, using .mkdir(exist=True).

Create the folder if it doesn't exist.

try:

 new_folder.mkdir(exist_ok=True)

except Exception as e:

 print(f"Error creating folder '{new_folder}': {e}")

 continue

That .mkdir() is a method of pathlib, the same module we’ve been using to walk
directory trees. The argument exist_ok=True tells Python that if the directory
already exists, mkdir() should do nothing and silently continue without raising
an error. Python creates the directory only if the directory doesn’t already exist.
The try: except: is just to cover any other unforeseen error, such as having
insufficient permissions to create a subfolder within the current folder.

The script then creates a variable named new_file_path, which is the new folder
name followed by / and the filename:

Define the new file path.

new_file_path = new_folder / file_path.name

Moving files with shutil
At this point, a subfolder with a name that matches the current file’s extension
exists. So, the next step is to simply move the current file into that folder. The
following code uses the .move() method of shutil for that task:

Move the file.

 try:

 shutil.move(str(file_path), str(new_file_path))

 print(f"Moved '{file_path.name}' to '{extension}' folder")

 except Exception as e:

 print(f"Error moving '{file_path.name}': {e}")

CHAPTER 4 Automating Files and Folders 87

The line that reads shutil.move(str(file_path), str(new_file_path)) moves
the file. The print() statement that follows simply shows that fact onscreen,
so you get some feedback as the script is running. The exception handling is
there only to catch unexpected errors, which would usually involve insufficient
permissions in the current folder.

Despite all the code for navigating the folder and catching exceptions, the actual
folder creating and moving the file is really just two lines of code that use mkdir()
from pathlib and .move() from shutil.

Making the script your own
To use the script in your own work, you can simply set parameters in the main()
function. Keep in mind that I intentionally left out recursion on this script, because
it has such a huge impact on the directory in which it’s running. So, basically,
your main option is to specify in which directory you want to organize files in one
of the subsequent lines.

I’ve shown syntax for Linux, macOS, and Windows paths in the code, and I’ve
commented out the ones I didn’t use, so you can see them as examples. You’ll
want to do the same, by commenting out the two paths you don’t want to use, and
defining your path using the proper syntax for your operating system.

def main():

 # Specify your directory. I'm using a Windows path as an example.

 directory = r"C:\Users\Alan\Documents\Practice\Organize"

 # If you're using macOS, use a path like this:

 # directory = "/Users/Alan/Documents/Practice/Organize"

 # If you're using Linux, use a path like this:

 # directory = "/home/Alan/Documents/Practice/Organize"

The rest of the code you can leave unchanged, because it just presents a little text
onscreen, runs the script, shows some text onscreen, and calls the organize_
files() function to do the actual work.

Renaming Files in Bulk
The next script allows you to rename files in bulk in a single directory or an entire
directory tree. It’s handy when you have a lot of auto-generated filenames that
look like _7f729bae-9c77-4ce1-8e84-bafc8ae741cb.png or some other random
name. You can rename all the files so they match the folder name. Optionally, you

88 PART 2 Automating Common Computer Tasks

can provide a filename of your choosing, like Beach.png. The files will be
given that name followed by a number in parentheses, such as Beach (1).png,
Beach (2).png, and so forth.

Don’t attempt to change filename extensions with this script. Filename exten-
sions indicate the file type and should never be changed arbitrarily.

As an alternative to renaming all the files in the folder, you can specify a pattern.
For example, the pattern "_*" will rename only files whose first character is
an underscore. The pattern "*.txt" will rename only files that have a .txt
extension.

There is no Undo for this massive renaming. So, as always, your best bet is to put
a copy of all the folders and files you want to rename inside a Practice folder.
That way, if you make a mistake and mess up your filenames, you still have the
originals in their original location. Here’s the entire script:

from pathlib import Path

def rename_files(root_dir, pattern, recursive, preferred_name):

 try:

 root_path = Path(root_dir)

 # If None is provided for preferred_name, use the folder name.

 rename_to_folder = True if preferred_name is None else False

 # Check if the root directory exists.

 if not root_path.exists():

 raise FileNotFoundError(f"The specified directory '{root_dir}'

does not exist.")

 # Set iteration method based on 'recursive' flag.

 files = root_path.rglob("*") if recursive else root_path.glob("*")

 # Dictionary to track count for each folder

 folder_counts = {}

 for file_path in files:

 if file_path.is_file():

 try:

 if not pattern or file_path.match(pattern):

 folder = file_path.parent

 # Update the count for the folder.

 count = folder_counts.get(folder, 0) + 1
 folder_counts[folder] = count

CHAPTER 4 Automating Files and Folders 89

 if rename_to_folder:

 base_name = folder.name

 else:

 base_name = preferred_name

 new_name = f"{base_name} ({count}){file_path.suffix}"

 new_path = folder / new_name

 file_path.rename(new_path)

 print(f"Renamed '{file_path.name}' to '{new_

path.name}'")

 except PermissionError:

 print(f"Permission denied: Unable to rename '{file_path}'")

 except FileNotFoundError as fnf_error:

 print(fnf_error)

 except PermissionError as perm_error:

 print(perm_error)

 except Exception as ex:

 print(f"An unexpected error occurred: {ex}")

def main():

 # Example usage. Path to the folder where you want to rename files.

 root_dir = r"C:\Users\Alan\Documents\Practice Rename"

 # None to rename all files, or pattern in quotation marks.

 pattern = None

 # True to rename files in subfolders; otherwise, False.

 recursive = True

 # None for folder name; otherwise, name in quotation marks.

 preferred_name = None

 print(f"\nRenaming files in '{root_dir}' , recursive={recursive}")

 rename_files(root_dir, pattern, recursive, preferred_name)

 print("Renaming completed.\n")

if __name__ == "__main__":

 main()

To understand how the script works, take a look at Figure 4-5, which contains a
bunch of subfolders.

90 PART 2 Automating Common Computer Tasks

Running this script against that folder would rename all the files in the Backup
folder to Backup (1), Backup (2), and so forth (or some other filename you
specified), with their original extensions. All the files (or at least the files you
specified) would be named the same. The files in Decompress would be named
Decompress (1), Decompress (2), and so forth.

In short, the effect of bulk-renaming files with this script is to give each file
within a folder a similar name, instead of just some random name or whatever
name you previously assigned. It’s especially helpful with files that were given a
random filename by some app or artificial intelligence (AI).

Renaming files with Python
Like other automation scripts in this book, this script uses pathutil to walk the
directory tree. Of course, there’s also a lot of exception handling to deal with
permissions errors and such to keep the script from crashing without a descrip-
tive error message. The actual renaming of each file happens with this one
line of code:

file_path.rename(new_path)

The script uses the .rename() method of pathutil to do the renaming. The code
that came before has already set file_path to the complete path to the file to be
renamed. The new_path variable has already been given the correct name for
the new file, based on user specifications defined in the main() function.

FIGURE 4-5:
The Practice
folder contains

subfolders
of files.

CHAPTER 4 Automating Files and Folders 91

Using the bulk renaming script
To use this script, you don’t need to change any code outside of the main()
function. Instead, specify your parameters in the following lines:

def main():

 # Example usage. Path to the folder where you want to rename files.

 root_dir = r"C:\Users\Alan\Documents\Practice Rename"

 # None to rename all files, or pattern in quotation marks.

 pattern = None

 # True to rename files in subfolders; otherwise, False.

 recursive = True

 # None for folder name; otherwise, folder name in quotation marks.

 preferred_name = None

Set the root_dir variable to the directory that contains the files that you want to
bulk rename. My example shows a Windows path. Make sure you use the proper
syntax for your operating system, such as Users/alan/Practice Rename
for macOS.

If you want to rename all files in the directory, leave the pattern variable set to
None. If you want to limit renaming, then specify a pattern of files to rename. For
example, if you want to rename only files that have a .bak extension, assign
"*.bak" (with the quotation marks) to that pattern variable. If you want to
rename only files whose names start with an underscore, set the pattern
to "_*.*").

Use the recursion variable to control recursion. If you leave that set to True,
the script will rename all files in that directory and all its subdirectories. If
that’s too extreme for you, set recursive to False. The script will ignore
subdirectories and rename only files in the root directory.

Lastly, if you rename each file in a folder to have the same filename as the folder,
leave the preferred_name variable set to None. Otherwise, specify a filename.
Don’t use a pattern, and don’t try to change the filename extension. For example,
if you want all the files to be named something like Beach (1), Beach (2), and so
on (with their current extensions), then simply specify "Beach" as the preferred
name, like this:

preferred_name = "Beach"

CHAPTER 5 Automating File Management 93

Chapter 5
Automating File
Management

In this chapter, you explore more techniques for navigating through directories
and subdirectories to automate file management. The powerful pathutil and
shutil modules make quick work of many mundane, time-consuming tasks.

You discover scripts for dealing with old and temporary files, backing up files,
removing duplicate files, and more.

Deleting Old and Temporary Files
This script can delete old and temporary files. In fact, it can delete files of any age,
which, of course, could be dangerous. To play it safe, we won’t let this script actu-
ally delete any files. Instead, we’ll have it send the files to the trash — that is, to
the Recycle Bin in Windows or to the Trash on Linux or macOS. That way, you can
review all the files, and recover any files you want to keep before deleting
them forever.

Luckily, sending to the trash is easy thanks to the send2trash module. This
cross-platform module determines which operating system your code is running
on and then sends the file to the appropriate location. You don’t have to worry
about any of that in your own code.

IN THIS CHAPTER

	» Getting rid of old and temporary files

	» Backing up files in bulk

	» Eliminating duplicate files

	» Compressing and decompressing files

94 PART 2 Automating Common Computer Tasks

Not all Linux implementations are the same. But ~/.local/share/Trash/ is a
fairly common location for files waiting to be deleted.

The send2trash module is not part of the standard library, but it is free — you
just have to install it yourself. After you create a folder for this script, set up and
activate your virtual environment, verify your Python version, and enter this
command in the Terminal:

pip install send2trash

If you get an error message about the file not being found, try the alterna-
tive syntax:

python -m pip install send2trash

Here’s the script in its entirety. Keep reading to find out how it works, and how
to adapt it to your own needs.

from pathlib import Path

from datetime import datetime, timedelta

Need to pip install send2trash.

from send2trash import send2trash

def safe_delete_to_trash(root_dir, pattern, recursive, days_old):

 try:

 root_path = Path(root_dir)

 # Check if the root directory exists.

 if not root_path.exists():

 raise FileNotFoundError(f"The specified directory '{root_dir}'

does not exist.")

 # Calculate cutoff date if days_old is provided.

 cutoff_date = datetime.now() - timedelta(days=days_old) if days_old

else None

 # Set iteration method based on 'recursive' flag.

 files = root_path.rglob("*") if recursive else root_path.glob("*")

 for file_path in files:

 if file_path.is_file(): # Process only files.

 try:

 # Check if the file matches the pattern and/or is older

than the cutoff date.

CHAPTER 5 Automating File Management 95

 matches_pattern = not pattern or file_path.match(pattern)

 is_old = not cutoff_date or datetime.fromtimestamp

(file_path.stat().st_mtime) < cutoff_date

 if matches_pattern and is_old:

 # Send file to the system Trash/Recycle Bin

 send2trash(str(file_path))

 print(f"Sent '{file_path}' to the trash.")

 except PermissionError:

 print(f"Permission denied: Unable to move '{file_path}'

to the trash.")

 except Exception as ex:

 print(f"An error occurred while processing '{file_

path}': {ex}")

 except FileNotFoundError as fnf_error:

 print(fnf_error)

 except PermissionError as perm_error:

 print(perm_error)

 except Exception as ex:

 print(f"An unexpected error occurred: {ex}")

Usage example:

def main():

 # Define the parameters for the safe delete operation.

 root_dir = r"C:\Users\Alan\Documents\Practice Delete"

 pattern = "*.tmp"

 recursive = True

 days_old = 1

 global_str = "recursively" if recursive else ""

 print(f"\nDeleting {pattern} files in '{root_dir}' {global_str} older than

{days_old} days.")

 safe_delete_to_trash(root_dir, pattern, recursive, days_old)

 print("Safe delete operation completed.\n")

if __name__ == "__main__":

 main()

This script uses pathlib to traverse folders and files. It uses datetime and
timedelta to determine how old a file is. The send2trash module, mentioned
earlier, handles all the business of sending files to the Recycle Bin or Trash first,
so you can review, and possibly recover, any files you want to keep before
permanently deleting them.

96 PART 2 Automating Common Computer Tasks

The function that does all the work is named safe_delete_to_trash, and it starts
with the following line:

def safe_delete_to_trash(root_dir, pattern, recursive, days_old):

When you use the function, you pass the starting folder as root_dir. Optionally,
you can define a pattern such as *.tmp to delete only temporary files (which
usually have the .tmp extension), though you can specify any pattern you
like. The recursive option lets you delete files from subfolders of the root
directory. The days_old option lets you define how old a file must be before it
can be deleted.

Much of the code inside the function resembles the preceding code in that it
walks through folders and files from the root. Exception handling is there to catch
any errors, such as in improper path that doesn’t lead to an actual folder.

Identifying old files
The days_old parameter that’s passed to the safe_delete_to_trash() function
is an integer, 365 (for one year). The cutoff_date variable gets a value that’s
365 days prior to the current date (when the script is running). If days_old is set
to None, then cutoff_date also gets a value of None.

Calculate cutoff date if days_old is provided.

cutoff_date = datetime.now() - timedelta(days=days_old) if days_old else None

Later in the code, as a loop is looking at one file at a time, a variable named is_old
gets a value of either True or False from this line of code:

is_old = not cutoff_date or datetime.fromtimestamp(file_path.stat().st_mtime) <

cutoff_date

That’s a lot to unpack, but basically it says that if no cutoff_date was specified,
or if the file’s date modified is less than (older than) the cutoff_date, then set
days_old to True. That makes the file a candidate for deletion. But that’s not the
only criterion for deletion. We also look at the file pattern, as described next.

The .fromtimestamp(), .stat(), and .st_mtime() methods are all from
pathutil, the same module used to walk the directory tree.

Matching the file pattern
In addition to setting a cutoff date, the script allows the user to specify a file
pattern. For example, *.tmp deletes only files with a .tmp filename extension,

CHAPTER 5 Automating File Management 97

which is a common extension for temporary files. The variable matches_pattern
is set to True if the file matches the pattern, or if the pattern passed to the
function is None:

matches_pattern = not pattern or file_path.match(pattern)

The user can also specify None for a pattern — a dangerous option, because it
leaves only the age of the file to determine as a criterion for deletion. So, be careful
with that.

The file.path.match(pattern) syntax is courtesy of pathutil, the module
allowing you to walk directories and check the file date. If the variable is_old
is True and the variable matches_pattern is True, the file is a candidate
for deletion.

Sending files to the trash
The file is sent to the trash if both matches_pattern and is_old are True. We’ll
use the send2trash module, which is much safer than permanently deleting the
file immediately, because you can open the Trash or Recycle Bin and restore any
files you think you should keep before permanently deleting them.

if matches_pattern and is_old:

 # Send file to the system Trash/Recycle Bin.

 send2trash(str(file_path))

With send2trash, you don’t need to worry about what operating system is in use
or how to copy the file to the trash, because send2trash already has that worked
out for you.

As with all scripts, we have some exception handling in there to exit the script
gracefully if something unexpected comes up.

Using the deletion script safely
To use the script for deleting old and temporary files, define your parameters in
the main() function by assigning values to the variables shown here:

def main():

 # Define the parameters for the safe delete operation.

 root_dir = r"C:\Users\Alan\Documents\Practice Delete"

 pattern = "*.tmp"

98 PART 2 Automating Common Computer Tasks

 recursive = True

 days_old = 90

In the working example, root_dir is set to a Windows path pointing to a folder
named Practice Delete in my Documents folder. Make sure to specify a starting
folder that matches your operating system (for example, /Users/Alan/Practice
Delete on macOS).

The pattern I’ve used is *.tmp because that’s a common extension for temporary
files. You can use any pattern you like, but be careful — you’re deleting files here.
I set the recursive option to True to delete from subfolders as well. Set that
option to False if you only want to delete from the root_dir directory.

I set days_old to 90 days for this example, but you can set yours to what-
ever you want.

When you run the script, this line calls the safe_delete_to_trash() function
with the parameters defined in your variables:

safe_delete_to_trash(root_dir, pattern, recursive, days_old)

The print() statements above and below this line provide a little feedback on
the screen.

After the script runs, remember to check your system’s Trash or Recycle Bin to
review all the files that were deleted. Recover any files you think you may need
in the future before permanently deleting the files.

Backing Up Files
Next we’ll automate backing up files. You’ll probably want to back up to an exter-
nal medium, like a USB drive, though you could also back up files to any cloud
drive, secondary hard drive, or even a folder on your primary hard drive to move
them to a backup medium later.

As with the other scripts, you’ll be able to pick a starting directory and choose
whether to include subfolders in the backup.

As an added twist, this script allows you to define multiple file types, such as
*.docx (for all Microsoft Word documents), *.xlsx (for all Microsoft Excel
files), and *.py (for all Python scripts). You can define whatever file types

CHAPTER 5 Automating File Management 99

you want, and as many as you want. This script also lets you choose whether
you want to overwrite existing files from previous backups.

This script uses the shutil (short for shell utilities) module for copying files. Much
of the code may look familiar, because we’ll be walking directories and catching
unanticipated errors and exceptions, as with previous scripts.

Here’s the entire script:

from pathlib import Path

import shutil

import sys

def backup_files(root_dir, backup_dir, file_types, recursive, overwrite):

 try:

 # Ensure the root directory exists.

 if not Path(root_dir).exists():

 raise FileNotFoundError(f"Root directory '{root_dir}' does

not exist.")

 # Ensure the backup directory exists or create it.

 Path(backup_dir).mkdir(parents=True, exist_ok=True)

 # Convert file_types to a lowercase set for lookups.

 file_types = {ext.lower() for ext in file_types}

 # Determine the search method.

 search_method = Path(root_dir).rglob if recursive else

Path(root_dir).glob

 for file in search_method("*"):

 try:

 if file.is_file() and file.suffix.lower() in file_types:

 backup_path = Path(backup_dir) / file.relative_to(root_dir)

 # Create parent directories if they don't exist.

 backup_path.parent.mkdir(parents=True, exist_ok=True)

 # Check if there's enough disk space.

 if shutil.disk_usage(backup_dir).free < file.stat().st_size:

 raise OSError(f"Not enough space to back up

file: {file}")

100 PART 2 Automating Common Computer Tasks

 if overwrite or not backup_path.exists():

 shutil.copy(file, backup_path)

 print(f"Copied: {file} -> {backup_path}")

 else:

 print(f"Skipped (already exists): {backup_path}")

 except PermissionError as e:

 print(f"Permission error: {e} (File: {file})")

 except OSError as e:

 print(f"OS error: {e} (File: {file})")

 except FileNotFoundError as e:

 print(f"Error: {e}")

 except PermissionError as e:

 print(f"Permission error: {e}")

 except Exception as e:

 print(f"An unexpected error occurred: {e}")

 sys.exit(1) # Exit with an error code.

def main():

 # Directory from which to back up

 root_dir = r"C:\Users\Alan\Documents\Practice Backup"

 # Directory to which to back up

 backup_dir = r"D:\\"

 # Define the file extensions to back up, separated by commas.

 file_types = [".docx", ".xlsx", ".png"]

 # Set to True for recursive backup or False for non-recursive.

 recursive = True

 # Set to True to overwrite existing files or False to skip them.

 overwrite = True

 # Call the backup function with the defined parameters.

 print("\nStarting backup...")

 backup_files(root_dir, backup_dir, file_types, recursive, overwrite)

 print("Backup completed.\n")

if __name__ == "__main__":

 main()

The code starts by importing the modules that the script needs in order to perform
the backup. The code to do the backup is in the backup_files() function defined
in the following line:

def backup_files(root_dir, backup_dir, file_types, recursive, overwrite):

CHAPTER 5 Automating File Management 101

As with the other code examples, this one uses exception handling to prevent the
script from crashing if some unanticipated problem occurs, like trying to access a
nonexistent folder.

In the following sections, I focus on the real meat — the parts that make this
script unique.

Creating folders from Python
When backing up files recursively, this script needs to create folders on the
backup medium to match folders in the starting directory. After it creates such a
folder, it can’t attempt to create it again because doing so would generate an
error message.

The trusty pathlib module makes this easy. Assuming that backup_dir contains
all the path information needed to create the directory, this one line of code cre-
ates the folder (if it doesn’t already exist). It even creates any parent folders that
may need to be created without ever generating an error message:

Ensure the backup directory exists or create it.

Path(backup_dir).mkdir(parents=True, exist_ok=True)

The parents=True part means that if the path to the directory is something like
/backups/2026/April, then the script can create both the parent directories and
the April directory. The exist_ok=True means that if the directory already exists,
the script will use the existing directory without throwing an exception.

Copying files with Python
After the backup folder exists, the script can copy the next file to be backed up to
that directory, assuming there’s room for the file. In the script, we use this code
to make sure there’s enough room and, if there isn’t, raise an exception to prevent
the script from crashing:

if shutil.disk_usage(backup_dir).free < file.stat().st_size:

 raise OSError(f"Not enough space to back up file: {file}")

The script allows the user to retain existing backup files without overwriting
them with newer backups. So, before you overwrite an existing file, the script
needs to check the overwrite variable, which is True to allow overwriting or
False to prevent overwriting. This next if statement ensures that either

102 PART 2 Automating Common Computer Tasks

overwrite is True or the file doesn’t already exist on the backup medium
before copying the file:

if overwrite or not backup_path.exists():

In this script, we use the .copy() method of shutil to copy the file, as shown
here. The file variable contains the path of the file to be copied, and backup_path
contains the complete path to the backup location and filename:

shutil.copy(file, backup_path)

Some print() statements provide feedback as the script is running. As in all our
automation scripts, most of the rest of the code is just about walking the directo-
ries and catching any unforeseen exceptions.

Personalizing the backup script
To use the script to back up files, define your parameters as variable names in the
main() function:

def main():

 # Directory from which to back up

 root_dir = r"C:\Users\Alan\Documents\Practice Backup"

 # Directory to which to back up

 backup_dir = r"D:\\"

 # Define the file extensions to back up, separated by commas.

 file_types = [".docx", ".xlsx", ".png"]

 # Set to True for recursive backup or False for non-recursive.

 recursive = True

 # Set to True to overwrite existing files or False to skip them.

 overwrite = True

To specify the location of files to back up, define the root_dir variable as a path.
In my working example, I’ve used a Windows path to a folder named Practice
Backup as my root directory.

When defining your own root_dir, make sure your path is valid and expressed in
Linux or macOS format with forward slashes if you’re using one of those operat-
ing systems.

Set the backup_dir variable to the location where you want to copy files. In the
example, I’ve set it to drive D:\ (a USB drive in my case). On Windows, the leading
r and double backslashes are required in the string, even though we typically write
the path as D:\.

CHAPTER 5 Automating File Management 103

On a Mac or Linux, you use the volume name under /Volumes/ rather than a drive
letter. The volume name is one you make up yourself when formatting the disk.
That name also appears under Locations in the Finder on macOS (see Figure 5-1).
So, the correct path to that would be /Volumes/Backup.

To define the types of files you want to back up, set the file_types variable to a
list (enclosed in square brackets) of comma-separated patterns. Enclose each pat-
tern in quotation marks. In the example, I’ve specified Word documents (.docx),
Excel spreadsheets (.xlsx), and Python scripts (.py). Of course, you can specify
any file types you like. Feel free to list as many, or as few, as you like — there isn’t
an upper limit. Just make sure to get all the quotation marks and commas in the
right place when writing your patterns.

If you want to include subfolders under the root directory, set recursive to True.
Otherwise, to copy only files from the root directory and none of its subdirecto-
ries, set recursive to False.

Lastly, if you want to replace any previous backups on the backup drive with newer
backup files, leave overwrite set to True. To retain previous backup files and not
copy newer backup files, set overwrite to False.

Finding and Removing Duplicate Files
Finding duplicate files isn’t always easy, because how can you be sure two files
are exactly the same? The answer to that question, in the computer world, is by
hashing the files. Hashing produces a digest of the file, which is a string of
characters. No two files will produce the same digest, unless the files are identical.

FIGURE 5-1:
A USB drive with

the volume name
Backup in
the Finder.

104 PART 2 Automating Common Computer Tasks

The next script hashes files in any directory or directory tree and compares the
hashes to find duplicates. When it finds a duplicate, the script sends one copy to
the trash for deletion. From there, you can decide if you want to permanently
delete the file or restore it and perhaps move it to a backup medium, so you still
have an extra copy of the file.

For this script, you’ll be using a module called hashlib. As its name implies,
hashlib is a hashing algorithm library that includes the MD5, SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-51 algorithms. You don’t need to pip install
hashlib because it’s part of the Python standard library.

This script uses the pathlib library to walk the directory tree. We’ll also use
send2trash to send duplicate files to the trash rather than permanently delete the
files, so you can inspect and possibly change your mind before deleting any files.
Remember to pip install send2trash after you activate your virtual environ-
ment on this one. Here’s the script in its entirety:

remove_dupilcate_files.py

Identifies duplicate files and sends them to the trash

from pathlib import Path

import hashlib

from send2trash import send2trash

def calculate_file_hash(file_path):

 # Calculate hash for a given file.

 hasher = hashlib.md5()

 with open(file_path, "rb") as f:

 # Read the file in chunks.

 while chunk := f.read(8192):

 hasher.update(chunk)

 return hasher.hexdigest()

def find_duplicates(root_dir, recursive=True):

 # Find duplicate files based on file content.

 search_method = Path(root_dir).rglob if recursive else Path(root_dir).glob

 file_hashes = {} # Maps hash to file paths

 duplicates = [] # List of duplicate file paths

 for file in search_method("*"):

 # Ensure it's a file.

 if file.is_file():

 file_hash = calculate_file_hash(file)

CHAPTER 5 Automating File Management 105

 if file_hash in file_hashes:

 duplicates.append(file)

 print(f"Duplicate found: {file} (same as

{file_hashes[file_hash]})")

 else:

 file_hashes[file_hash] = file

 return duplicates

def trash_duplicates(duplicates):

 # Send duplicate files to the trash.

 for file in duplicates:

 try:

 # Safely send the file to the trash.

 send2trash(str(file))

 print(f"Sent to trash: {file}")

 except Exception as e:

 print(f"Failed to trash {file}: {e}")

def main():

 # Root directory to scan for duplicates

 root_dir = r"C:\Users\Alan\Documents\Practice Duplicates"

 # Set to False for non-recursive scanning.

 recursive = True

 # Find duplicates.

 print("\nScanning for duplicate files...")

 duplicates = find_duplicates(root_dir, recursive)

 if duplicates:

 print(f"\n{len(duplicates)} duplicate files found.")

 # Safely send duplicates to the trash.

 trash_duplicates(duplicates)

 else:

 print("\nNo duplicate files found.")

if __name__ == "__main__":

 main()

This script contains a lot of the same code as others in this book for walking direc-
tories and catching errors. In the following sections, I focus on the function for
hashing files, which makes this script unique.

106 PART 2 Automating Common Computer Tasks

Calculating a file hash
To calculate a hash digest for any one file, this script uses the calculate_file_
hash() function. The file_path parameter passed to the function will always be
the path to the file to hash.

def calculate_file_hash(file_path):

 # Calculate hash for a given file.

 hasher = hashlib.md5()

 with open(file_path, "rb") as f:

 # Read the file in chunks.

 while chunk := f.read(8192):

 hasher.update(chunk)

 return hasher.hexdigest()

The line hasher = hashlib.md5() creates an object named hasher that will be
used to calculate the hash using MD5. That MD5 hash works well for comparing
files. But if you’re familiar with hashing and need to use another algorithm, you
can replace that line with any of the following:

	» hasher = hashlib.sha256()

	» hasher = hashlib.sha512()

	» hasher = hashlib.sha1()

	» hasher = hashlib.blake2b()

	» hasher = hashlib.blake2s()

Some of the other hashing algorithms are slower but more secure than MD5.
However, when your goal is simply to compare files on your own system and you
aren’t trying to find malicious actors attempting to intentionally forge files, MD5
is generally considered sufficient.

The line that reads with open(file_path, "rb") as f opens the file to hash in
read binary mode, which allows for byte-by-byte reading of the file. The line while
chunk := f.read(8192) sets up a loop that reads 8,192 bytes (8KB) at a time
from the file.

Each 8KB chunk of the file is stored in a variable named chunk. Then hasher.
update(chunk) updates the overall calculation for the latest 8KB. When the loop
is finished, the entire hash digest is complete, and the last line in the function,
return hasher.hexdigest(), returns that value to the calling function.

CHAPTER 5 Automating File Management 107

Finding duplicate files
The find_duplicates() function does the actual searching for duplicate files.
As it does, it populates a dictionary named file_hashes and a list named
duplicates.

def find_duplicates(root_dir, recursive=True):

 # Find duplicate files based on file content.

 search_method = Path(root_dir).rglob if recursive else Path(root_dir).glob

 file_hashes = {} # Maps hash to file paths

 duplicates = [] # List of duplicate file paths

 for file in search_method("*"):

 # Ensure it's a file.

 if file.is_file():

 file_hash = calculate_file_hash(file)

 if file_hash in file_hashes:

 duplicates.append(file)

 print(f"Duplicate found: {file} (same as

{file_hashes[file_hash]})")

 else:

 file_hashes[file_hash] = file

 return duplicates

Each row in the file_hashes dictionary contains a file’s hash digest, followed by
a colon, and then the path to the file that produced that hash, as in the follow-
ing example:

{

 'abc123': Path('C:/Users/Alan/Documents/Practice Duplicates/file1.txt'),

 'def456': Path('C:/Users/Alan/Documents/Practice Duplicates/file2.txt'),

 'abc123': Path('C:/Users/Alan/Documents/Practice Duplicates/file3.txt')

}

In the preceding code, I use short strings like abc123 and def456 to represent the
hash digest. In reality, each hash digest is 30 characters in length, not just
six characters.

Each time a hash digest is completed, the following lines of code check whether
the hash already exists in the dictionary. If it does, the path of the file that pro-
duced the hash digest is added to the duplicates list.

if file_hash in file_hashes:

 duplicates.append(file)

108 PART 2 Automating Common Computer Tasks

In other words, if the file is identical to a previously hashed file (because its
hash digest is the same), then the path to that duplicate file is added to the
duplicates list. So, the duplicates list ends up being paths to files that are
duplicates of other files. It may look something like this:

[

Path('C:/Users/Alan/Documents/Practice Duplicates/file3.txt')

]

When the def find_duplicates() function has finished, it returns the list of
duplicate file paths to the function that called it.

Deleting duplicate files
So far, the script hasn’t actually sent anything to the trash. The duplicates list
just contains a list of paths to files that are duplicates. The trash_duplicates()
function takes care of moving the duplicate files to the trash, using the
send2trash module:

def trash_duplicates(duplicates):

 # Send duplicate files to the trash.

 for file in duplicates:

 try:

 send2trash(str(file)) # Safely send the file to the trash.

 print(f"Sent to trash: {file}")

 except Exception as e:

 print(f"Failed to trash {file}: {e}")

Using the send2trash module is safer than permanently deleting the file imme-
diately, because it gives the user a chance to review the file to be deleted.

Tweaking the find duplicates script
To use the script for deleting duplicates, define the path to your starting directory
in the main() function by assigning a value to the root_dir variable.

I’ve used a folder named Practice Duplicates in my Windows Documents
folder. Make sure to use the correct syntax for your operating system (for
example, /users/alan/Practice Duplicates for macOS).

def main():

Root directory to scan for duplicates

root_dir = r"C:\Users\Alan\Documents\Practice Duplicates"

CHAPTER 5 Automating File Management 109

Set to False for non-recursive scanning.

recursive = True

If you want to include subdirectories in your search, leave the recursive
variable set to True. Otherwise, you can set the recursive variable to False
to exclude subdirectories.

Keep in mind that the duplicate files aren’t deleted from your system. They’ll be
in the Trash or Recycle Bin for your review.

Compressing Files
The next automation script compresses any file types from any directory or direc-
tory tree. The original files remain intact. You can use the Zip files for sharing
with others or for backups. Here’s the script in its entirety:

#compress_files.py

This script compresses any file types into a Zip file.

import os

from pathlib import Path

import zipfile

from datetime import datetime

def compress_files(root_dir, output_path, file_types, recursive):

 try:

 # Create Zip file name from current datetime.

 current_time = datetime.now().strftime("%Y%m%d_%H%M%S")

 filename = f"{current_time}.zip"

 # Ensure output directory exists.

 base_path = Path(output_path)

 base_path.mkdir(parents=True, exist_ok=True)

 # Join the path with the filename.

 output_zip = base_path / filename

 # Verify root directory exists.

 if not Path(root_dir).exists():

 raise FileNotFoundError(f"Source directory '{root_dir}' does

not exist")

110 PART 2 Automating Common Computer Tasks

 # Check if you have write permissions for output directory.

 if not base_path.is_dir() or not os.access(base_path, os.W_OK):

 raise PermissionError(f"No write permission for output directory:

{output_path}")

 search_method = Path(root_dir).rglob if recursive else

Path(root_dir).glob

 with zipfile.ZipFile(output_zip, 'w', compression=zipfile.ZIP_

DEFLATED) as zipf:

 files_added = False

 for file in search_method("*"):

 if file.is_file() and file.suffix.lower() in file_types:

 try:

 zipf.write(file, file.relative_to(root_dir))

 print(f"Added to archive: {file}")

 files_added = True

 except PermissionError:

 print(f"Warning: No permission to access file: {file}")

 continue

 except OSError as e:

 print(f"Warning: Failed to add file {file}: {str(e)}")

 continue

 if not files_added:

 print("Warning: No files matching specified types were found")

 return output_zip

 except FileNotFoundError as e:

 print(f"Error: {str(e)}")

 return None

 except PermissionError as e:

 print(f"Error: {str(e)}")

 return None

 except zipfile.BadZipFile as e:

 print(f"Error: Failed to create Zip file: {str(e)}")

 return None

 except Exception as e:

 print(f"Unexpected error occurred: {str(e)}")

 return None

def main():

 try:

 # Directory to compress files from

CHAPTER 5 Automating File Management 111

 root_dir = r"C:\Users\Alan\Documents\Practice\Zip"

 # Where to save the Zip file

 output_path = r"C:\Users\Alan\Documents\Zip Files"

 # File types to compress

 file_types = [".docx", ".xlsx", ".png"]

 # Set to False for non-recursive compression

 recursive = True

 # Validate file_types parameter

 if not isinstance(file_types, list) or not all(isinstance(ft, str) for

ft in file_types):

 raise ValueError("file_types must be a list of strings")

 # Compression

 print(f"\nCompressing files from {root_dir}")

 zip_file = compress_files(root_dir, output_path, file_types, recursive)

 if zip_file is not None:

 print(f"Files compressed successfully to {zip_file}.\n")

 else:

 print("Compression failed.\n")

 except ValueError as e:

 print(f"Error: Invalid input - {str(e)}")

 except Exception as e:

 print(f"Unexpected error in main: {str(e)}")

if __name__ == "__main__":

 main()

The script starts with some import statements, all of which are in the standard
library. You don’t need to pip install anything. Much of the script is for walk-
ing directory trees and catching errors, which I explain earlier, so I won’t
dwell on that.

This script uses the datetime module to define a filename for each new Zip file.
You can see that code here near the top of the compress_files() function:

current_time = datetime.now().strftime("%Y%m%d_%H%M%S")

filename = f"{current_time}.zip"

In this script, you can specify where you want the Zip files to be stored. That path
is passed into the compress_files() function as output_path. Next you can see
the code that creates that directory if it doesn’t already exist. Then the final line

112 PART 2 Automating Common Computer Tasks

defines the complete path to the Zip file by combining that output path (defined
as the pathlib object base_path here) with the filename:

Ensure output directory exists.

base_path = Path(output_path)

base_path.mkdir(parents=True, exist_ok=True)

Join the path with the filename.

output_zip = base_path / filename

When using this script, you can specify the types of files you want to zip as a series
of file patterns (for example, "*.docx", "*.xlsx", or "*.pptx"). That list is
passed into the compress_files function as the file_types parameter.

Compressing files with Python
The real meat of this script is the part where it zips the file types you specified.
Inside a loop that walks the directory tree, this line opens that file in a way what
allows Python to add one file at a time:

with zipfile.ZipFile(output_zip, "w", compression=zipfile.ZIP_DEFLATED) as zipf:

The zipfile.Zipfile uses the Zipfile class from the zipfile module to create
a Zip file at the path defined by output_zip in write ("w") mode. The
compression=zipfile.ZIP_DEFLATED argument uses the DEFLATE algorithm,
which compresses the files to reduce their size using the standard compression
method for Zip files. The as zipf part provides a shortcut name that subsequent
code can use to refer to that open Zip file.

The following if statement verifies that the current item in the directory is a
file (not a folder) and checks to see whether that file’s extension is in the
file_types list of files to be included in the compression:

if file.is_file() and file.suffix.lower() in file_types:

If all the criteria are met for including the current file, that file is then added to
the Zip file using this one line of code:

zipf.write(file, file.relative_to(root_dir))

That’s really all it takes to add a file to a Zip file with Python.

CHAPTER 5 Automating File Management 113

As with other scripts in this chapter, there’s lots of exception handling to catch
and deal with any unforeseen problems, like insufficient permissions for writing
to the Zip file. The script also prints some feedback on the screen to show
its progress.

Setting your compression parameters
To use the compression script, set your parameters in the main() function,
like this:

def main():

 try:

 # Directory to compress files from

 root_dir = r"C:\Users\Alan\Documents\Practice\Zip"

 # Where to save the Zip file

 output_path = r"C:\Users\Alan\Documents\Zip Files"

 # File types to compress

 file_types = [".docx", ".xlsx", ".png"]

 # Set to False for non-recursive compression

 recursive = True

Use the root_dir variable to define which folder contains the files you want to
compress. Use the output_path variable to define the folder location (but not a
filename) for the Zip file. In this example, I used Windows paths for both. Be sure
to use the proper syntax for Linux or macOS if you’re using one of those operat-
ing systems.

If you’re using an external drive as the output, remember that on Windows you
need to escape backslashes in string literals (for example, r"D:\\" for drive D:).
On macOS, external drives appear under /Volumes/ followed by the volume name.
For example, if the volume is named Zips under Locations in the Finder, the path
would be /Volumes/Zips.

Use file_types to define which types of files you want to compress. Use square
brackets ([]) to indicate a list. Enclose file patterns in quotation marks, and sepa-
rate them in commas, as in my example.

To compress files in subfolders, set the recursive option to True. To zip only the
files in root_dir, set recursive to False.

114 PART 2 Automating Common Computer Tasks

Decompressing Files
The next script decompresses all Zip files in a directory or recursively in a
directory tree. Like the previous script, this one uses the zipfile module, as well
as modules for walking the directory tree. Here’s the script:

from pathlib import Path

import zipfile

def decompress_files(directory_path, recursive):

 # Decompress Zip files in a directory.

 try:

 # Convert string path to Path object and ensure it exists.

 source_dir = Path(directory_path)

 if not source_dir.exists():

 raise FileNotFoundError(f"Directory '{directory_path}' does

not exist")

 if not source_dir.is_dir():

 raise NotADirectoryError(f"'{directory_path}' is not a directory")

 # Counter for processed archives

 archives_processed = 0

 # Walk through directory.

 pattern = "*.zip"

 for path in source_dir.rglob(pattern) if recursive else source_dir.

glob(pattern):

 if path.is_file():

 try:

 # Create output directory based on Zip file name.

 output_dir = path.with_suffix('')

 output_dir.mkdir(exist_ok=True)

 # Open and extract Zip file.

 with zipfile.ZipFile(path, "r") as zipf:

 # Check if Zip file is valid.

 if zipf.testzip() is not None:

 print(f"Warning: {path.name} appears to be

corrupted")

 continue

CHAPTER 5 Automating File Management 115

 # Extract all contents

 zipf.extractall(output_dir)

 archives_processed += 1

 print(f"Decompressed: {path.name} -> {output_dir.name}")

 print(f"Extracted to: {output_dir}")

 except zipfile.BadZipFile:

 print(f"Error: {path.name} is not a valid zip file")

 except PermissionError:

 print(f"Error: Permission denied while processing

{path.name}")

 except Exception as e:

 print(f"Error decompressing {path.name}: {str(e)}")

 if archives_processed == 0:

 print(f"No Zip files found in {'directory and subdirectories' if

recursive else 'directory'}")

 else:

 print(f"\nDecompression complete. Processed {archives_processed}

archive(s)")

 except FileNotFoundError as e:

 print(f"Error: {str(e)}")

 except NotADirectoryError as e:

 print(f"Error: {str(e)}")

 except PermissionError:

 print("Error: Permission denied accessing directory")

 except Exception as e:

 print(f"An unexpected error occurred: {str(e)}")

def main():

 # Set your directory path and recursive option here.

 directory = r"C:\Users\Alan\Documents\Practice Decompress"

 recursive = True

 # Execute decompression.

 decompress_files(directory, recursive)

if __name__ == "__main__":

 main()

116 PART 2 Automating Common Computer Tasks

The decompression script works like others in this chapter in terms or walking
through folders and files. The main work takes place in a function named
decompress_files(), which accepts two parameters: directory_path (the path
to the directory that contain files to unzip), and recursive (a Boolean that should
be set to True if you want to decompress files in subdirectories or False to
skip subdirectories).

def decompress_files(directory_path, recursive):

As usual, there’s lots of exception handling to exit the script gracefully if unex-
pected errors occur. In the following sections, I focus on what’s unique to
this script.

Unzipping files with Python
The main meat of this script is in this code:

Open and extract zip file

with zipfile.ZipFile(path, "r") as zipf:

 # Check if zip file is valid

 if zipf.testzip() is not None:

 print(f"Warning: {path.name} appears to be corrupted")

 continue

 # Extract all contents

 zipf.extractall(output_dir)

The line that reads with zipfile.ZipFile(path, "r") as zipf opens the file at
path as a Zip archive in read mode ("r"). That path file will always point to a Zip
file because of the way pathutil is walking the current directory. The as zipf
just provides the simple name zipf that subsequent code can use to refer to the
open Zip file.

Next, the .testzip() method runs a quick check on the file to ensure it’s not
corrupted. That method returns None if there are no problems with the file. If
.testzip() returns anything other than None, that indicates a corrupted file,
and the script won’t attempt to decompress the file. Instead, it prints an
error message.

Assuming everything has gone well so far, the next code runs and the file is
decompressed using the .extractall() method of zipfile in this one line of code:

zipf.extractall(output_dir)

CHAPTER 5 Automating File Management 117

That covers all the steps needed to extract all the files in the Zip file to the
output_dir, which is a regular folder that has the same name as the Zip file,
without the .zip extension. The remaining code is just to keep a count of things,
present some feedback on the screen, and handle any exceptions.

Using the decompression script
To use the decompression script, you need to set only two parameters in the
main() function:

def main():

 # Set your directory path and recursive option here.

 directory = r"C:\Users\Alan\Documents\Practice Decompress"

 recursive = True

Use the directory variable to set your starting directory, using proper syntax for
Windows (as in my example) or Linux or macOS, both of which use forward
slashes (for example, /Users/Alan/Practice Decompress).

Set recursive to True to decompress Zip files in all subdirectories; otherwise,
set recursive to False.

CHAPTER 6 Automating Image and Video Files 119

Chapter 6
Automating Image
and Video Files

This chapter is all about Python automation for image and video files. I show
you how to automatically resize, rotate, flip, and crop multiple images. You
see how to convert image file types in bulk. Finally, I explain how to extract

individual frames from a video into image files.

Two Python modules will help greatly in this chapter:

	» Pillow: Often referred to as PIL (short for Python Imaging Library), this library
offers tools for opening, manipulating, and saving many different image file
formats including JPEG, PNG, and WebP. It provides tools for resizing and
cropping, applying filters, and other common image tasks.

	» cv2: This module offers a Python interface to OpenCV (short for Open Source
Computer Vision Library), a powerful library designed for computer vision,
image processing, and machine learning tasks.

I begin with a single script that can resize, rotate, flip, and crop any number of
images in any folder.

IN THIS CHAPTER

	» Flipping, resizing, cropping, and
rotating images

	» Bulk changing image file formats

	» Grabbing individual frames from
video files

120 PART 2 Automating Common Computer Tasks

Resizing, Rotating, Flipping, and
Cropping Images

For the first script in this chapter, you’ll create a Python class, so it’s easy to reuse
in other scripts. The class includes methods to resize, rotate, flip, and, crop
images, using capabilities of the Pillow library.

Pillow isn’t part of the standard library. When you create and activate a virtual
environment for this project, make sure to install it with pip install Pillow.

Here’s the script in its entirety:

image_processor.py

This script offers resizing, rotating, flipping, and cropping images.

pip install Pillow for the following import.

from PIL import Image

from pathlib import Path

import os

class ImageProcessor:

 def __init__(self, input_dir, recursive, file_types):

 try:

 # Define input parameters in the main() function.

 self.input_dir = Path(input_dir)

 # Check if input directory exists.

 if not self.input_dir.exists():

 raise FileNotFoundError(f"Input directory '{input_dir}'

does not exist")

 # Check if input directory is accessible.

 if not os.access(self.input_dir, os.R_OK):

 raise PermissionError(f"No read permission for directory

'{input_dir}'")

 self.include_subdirs = recursive

 self.file_types = tuple(map(str.lower, file_types))

 self.output_dir = self.input_dir / "processed_images"

 # Create output directory with permission check.

 try:

 self.output_dir.mkdir(exist_ok=True)

 # Verify write permission for output directory.

CHAPTER 6 Automating Image and Video Files 121

 if not os.access(self.output_dir, os.W_OK):

 raise PermissionError(f"No write permission for output

directory '{self.output_dir}'")

 except PermissionError as e:

 raise PermissionError(f"Cannot create output directory: {e}")

 except OSError as e:

 raise OSError(f"Failed to create output directory: {e}")

 except (FileNotFoundError, PermissionError, OSError) as e:

 raise type(e)(f"Initialization failed: {e}")

 def get_image_files(self):

 try:

 # Get list of image files based on specifications.

 image_files = []

 pattern = "**/*" if self.include_subdirs else "*"

 for file_type in self.file_types:

 image_files.extend(self.input_dir.glob(pattern + file_type))

 return [str(file) for file in image_files] # Convert Path objects

to strings for compatibility

 except Exception as e:

 print(f"Error accessing image files: {e}")

 return []

 def resize(self, width=None, height=None, output_suffix="_resized"):

 # Resize all images to specified width or height, maintaining aspect

ratio if either is None.

 if width is None and height is None:

 raise ValueError("At least one of width or height must be specified")

 for image_path in self.get_image_files():

 try:

 with Image.open(image_path) as img:

 orig_width, orig_height = img.size

 # Calculate dimensions based on input.

 if width is not None and height is not None:

 new_width, new_height = width, height

 elif width is not None:

 new_width = width

 new_height = int((width / orig_width) * orig_height)

122 PART 2 Automating Common Computer Tasks

 else: # height is not None

 new_height = height

 new_width = int((height / orig_height) * orig_width)

 # Perform resize.

 resized_image = img.resize((new_width, new_height), Image.

Resampling.LANCZOS)

 output_path = self._get_output_path(image_path,

output_suffix)

 try:

 resized_image.save(output_path)

 print(f"Resized image saved to: {output_path} ({new_

width}x{new_height})")

 except (PermissionError, OSError) as e:

 print(f"Error saving resized image {output_path}: {e}")

 except (FileNotFoundError, PermissionError, OSError) as e:

 print(f"Error resizing {image_path}: {e}")

 def rotate(self, degrees, output_suffix="_rotated"):

 # Rotate all images by specified degrees.

 for image_path in self.get_image_files():

 try:

 with Image.open(image_path) as img:

 rotated_image = img.rotate(degrees, expand=True)

 output_path = self._get_output_path(image_path,

output_suffix)

 try:

 rotated_image.save(output_path)

 print(f"Rotated image saved to: {output_path}")

 except (PermissionError, OSError) as e:

 print(f"Error saving rotated image {output_path}: {e}")

 except (FileNotFoundError, PermissionError, OSError) as e:

 print(f"Error rotating {image_path}: {e}")

 def flip(self, direction="horizontal", output_suffix="_flipped"):

 # Flip all images horizontally or vertically.

 for image_path in self.get_image_files():

 try:

 with Image.open(image_path) as img:

 if direction.lower() == "horizontal":

 flipped_image = img.transpose(Image.FLIP_LEFT_RIGHT)

 elif direction.lower() == "vertical":

 flipped_image = img.transpose(Image.FLIP_TOP_BOTTOM)

CHAPTER 6 Automating Image and Video Files 123

 else:

 raise ValueError("Direction must be 'horizontal' or

'vertical'")

 output_path = self._get_output_path(image_path,

output_suffix)

 try:

 flipped_image.save(output_path)

 print(f"Flipped image saved to: {output_path}")

 except (PermissionError, OSError) as e:

 print(f"Error saving flipped image {output_path}: {e}")

 except (FileNotFoundError, PermissionError, OSError,

ValueError) as e:

 print(f"Error flipping {image_path}: {e}")

 def crop(self, left, top, right, bottom, output_suffix="_cropped"):

 # Crop all images using specified coordinates.

 for image_path in self.get_image_files():

 try:

 with Image.open(image_path) as img:

 cropped_image = img.crop((left, top, right, bottom))

 output_path = self._get_output_path(image_path,

output_suffix)

 try:

 cropped_image.save(output_path)

 print(f"Cropped image saved to: {output_path}")

 except (PermissionError, OSError) as e:

 print(f"Error saving cropped image {output_path}: {e}")

 except (FileNotFoundError, PermissionError, OSError) as e:

 print(f"Error cropping {image_path}: {e}")

 def _get_output_path(self, input_path, suffix):

 # Generate output file path with suffix.

 try:

 input_path = Path(input_path)

 filename = input_path.stem

 extension = input_path.suffix

 return str(self.output_dir / f"{filename}{suffix}{extension}")

 except Exception as e:

 print(f"Error generating output path for {input_path}: {e}")

 return str(self.output_dir / f"error{suffix}.jpg") # Fallback path

124 PART 2 Automating Common Computer Tasks

def main():

 try:

 # Replace with your directory path.

 input_directory = r"C:\Users\Alan\Documents\Practice\Img Process"

 # Mac path example

 #input_directory = "/Users/alan/Practice/Img Process"

 # True to include subdirectories

 recursive = True

 # Define as tuple inside parentheses. Must be raster image types.

 file_types=("*.jpg", "*.jpeg", "*.png", "*.webp")

 # Create processor instance with custom parameters.

 processor = ImageProcessor(input_directory, recursive, file_types)

 # Perform various operations on all matching images.

 # Comment out any operation you don't want to perform.

 # Resize to 512px width, auto height

 processor.resize(width=512, height=None)

 # Resize to 512px height, auto width.

 # processor.resize(width=None, height=512)

 # Resize to exactly 512x512.

 # processor.resize(width=512, height=512)

 # Rotate 90 degrees.

 processor.rotate(90)

 # Flip horizontally.

 processor.flip("horizontal")

 # Flip vertically.

 processor.flip("vertical")

 # Crop to 256x256 from (100,100).

 processor.crop(100, 100, 356, 356)

 except (FileNotFoundError, PermissionError, OSError) as e:

 print(f"Error in main execution: {e}")

 return

if __name__ == "__main__":

 main()

Obviously, that’s a lot of code! However, much of it is for walking the directory
tree and catching unforeseen errors. In the following sections, I focus on the code
that does the actual work of modifying images.

CHAPTER 6 Automating Image and Video Files 125

The Pillow module works with raster images, which have extensions like .bmp,
.gif, .jpeg, .jpg, .png, .psd, .raw, .tif, .tiff, and .webp. It won’t work with
vector images, which have extensions like .ai, .cdr, .eps, .pdf, and .svg.

This script provides four methods for processing any number of images:

	» crop(): Crops image using specified coordinates

	» flip(): Flips image horizontally or vertically

	» resize(): Changes image dimensions

	» rotate(): Rotates image by specified degrees

Each operation is defined in its own method. This script uses pathlib to walk
directories that contain the files to process.

Because we’ve defined a class for the script, the functions defined with the dif
keyword are treated as methods and called using the .methodname() syntax.

Resizing images
The resize method handles resizing of images. It accepts four parameters: self,
width, height, and output_suffix. The self parameter is the image being
resized. The width and height parameters are integers specifying the width and
height to which to resize. You can set just the width or just the height, set the
opposite side to None to resize along one dimension, and automatically calculate
the opposite side’s size to maintain the image aspect ratio.

The optional output suffix parameter adds _resized to the filename of the
resized image, so the original file retains its original filename. If you want to use
some word other than _resized as the addition to the name, you can pass that as
a string to override the default:

def resize(self, width, height, output_suffix="_resized"):

Much of the code in the function is for calculating the image size. To retain the
aspect ratio, you specify only width or height. As usual, there’s also some
exception handling. The actual resizing of the image and saving the resized
image happens in this code:

Perform resize

resized_image = img.resize((new_width, new_height), Image.Resampling.LANCZOS)

126 PART 2 Automating Common Computer Tasks

output_path = self._get_output_path(image_path, output_suffix)

try:

 resized_image.save(output_path)

The LANCZOS in the code is a reference to a high-quality image resampling method
invented by Hungarian mathematician Cornelius Lanczos. Pillow offers other
methods including BICUBIC, BILINEAR, BOX, HAMMING, and NEAREST.

Rotating images
The method to rotate an image accepts three parameters: self (a reference to the
image being rotated), degrees, and an integer indicating how many degrees to
rotate the image. The optional output_suffix parameter lets you specify text to
add to the filename of the rotated image to differentiate the rotated image from
the original image. The default is _rotated if no other value is passed:

def rotate(self, degrees, output_suffix="_rotated")

Rotating and saving the image is handled by the following line:

rotated_image = img.rotate(degrees, expand=True)

Adding expand=True ensures the image is enlarged enough, if needed, to avoid
cropping. The rotated image is then stored in an object named rotated_image.
The next two lines add the output suffix to the filename, and then save the rotated
image object to that filename. Then some text prints to provide feedback on the
screen, or an error message if any unforeseen exceptions prevent saving the file:

output_path = self._get_output_path(image_path, output_suffix)

try:

 rotated_image.save(output_path)

 print(f"Rotated image saved to: {output_path}")

except (PermissionError, OSError) as e:

 print(f"Error saving rotated image {output_path}: {e}")

That’s the basic code for rotating and saving an image.

Flipping images
The method to flip an image accepts three parameters. The self parameter refers
to the image being flipped. The direction parameter can be either "horizontal"

CHAPTER 6 Automating Image and Video Files 127

or "vertical"; it defaults to "horizontal" if nothing is passed in. The output_
suffix is the text to add to the filename of the flipped image, and it defaults to
_flipped if no parameter value is passed:

def flip(self, direction="horizontal", output_suffix="_flipped"):

Within the method, this code flips the image horizontally or vertically, depending
on the value of the direction parameter, or generates an error if some unknown
value was passed in:

with Image.open(image_path) as img:

 if direction.lower() == "horizontal":

 flipped_image = img.transpose(Image.FLIP_LEFT_RIGHT)

 elif direction.lower() == "vertical":

 flipped_image = img.transpose(Image.FLIP_TOP_BOTTOM)

 else:

 raise ValueError("Direction must be 'horizontal' or 'vertical'")

 output_path = self._get_output_path(image_path, output_suffix)

 try:

 flipped_image.save(output_path)

 print(f"Flipped image saved to: {output_path}")

In the preceding code, image.transpose() is the Pillow method that does the
actual flipping. That one line of code is all it takes to flip the image, before subse-
quent code saves the flipped image with the output suffix added to the filename.

Cropping images
The method to crop an image accepts up to six parameters. The self parameter
refers to the image being cropped. The left, top, right, and bottom parame-
ters are integers specifying the number of pixels to trim from each side of the
image. The optional output_suffix specifies the text to add to the filename of
the cropped image; use _cropped if you don’t pass a different value:

def crop(self, left, top, right, bottom, output_suffix="_cropped"):

The actual cropping of the image is simple in Pillow. It’s performed with
this one line:

cropped_image = img.crop((left, top, right, bottom))

128 PART 2 Automating Common Computer Tasks

Subsequent code saves the cropped image to the original filename with
output_suffix added. The rest of the code is error handling and providing
feedback onscreen.

Keep in mind that this script always saves modified images to a new filename.
Your original images won’t be lost or altered by this script.

Customizing the image processor
To adapt this script to your own needs, use the main() function to set your
starting directory path accessing the image files you want to change in the
input_directory variable.

If you want to process images in subfolders, set recursion to True; otherwise,
set recursion to False. List file patterns enclosed in quotation marks and
separated by commas inside parentheses (for a tuple) as shown here. You don’t
need to change the line that starts with processor= because that instantiates
the processor object to get the process started:

Replace with your directory path.

input_directory = r"C:\Users\Alan\Documents\Practice\Img Process"

Mac path example

#input_directory = "/Users/alan/Practice/Img Process"

True to include subdirectories

recursive = True

Define as tuple inside parentheses. Must be raster image types.

file_types=("*.jpg", "*.jpeg", "*.png", "*.webp")

Create processor instance with custom parameters.

processor = ImageProcessor(input_directory, recursive, file_types)

In the next lines, you can comment out any methods you don’t want to use. For
the methods you do use, set the parameters you want to pass into the methods.

Perform various operations on all matching images.

Comment out any operation you don't want to perform.

Resize to 512px width, auto height.

processor.resize(width=512, height=None)

Resize to 512px height, auto width.

processor.resize(width=None, height=512)

Resize to exactly 512x512.

processor.resize(width=512, height=512)

Rotate 90 degrees.

processor.rotate(90)

CHAPTER 6 Automating Image and Video Files 129

Flip horizontally.

processor.flip("horizontal")

Flip vertically.

processor.flip("vertical")

Crop to 256x256 from (100,100).

processor.crop(100, 100, 356, 356)

Any of the preceding lines that starts with processor will alter images you’ve
specified in your input directory and subdirectories (if you set recursion to
True). If you don’t want to use any operation, simply comment out the line you
don’t want to use by preceding the line with a # symbol. You don’t have to do all
the operations that the script offers every time you run the script.

After the code runs, you’ll find processed images in a subfolder named
processed_images in the same folders as the original images, specified in the
input_directory in the main() function.

Converting Image File Types
This automation script converts raster images (images made up of pixels, such
as BMP, JPEG, PNG, or WebP) into other raster image formats. The original
files are preserved. The converted images keep the same filenames as the
originals, but they use the appropriate filename extension for the new format.
Here’s the script:

convert_images.py

Requires: pip install Pillow

from pathlib import Path

from PIL import Image

import os

def convert_images(input_dir, file_patterns, output_format, recursive=True):

 try:

 # Validate input directory.

 input_path = Path(input_dir)

 if not input_path.exists():

 print(f"Input directory does not exist: {input_dir}")

 return

 if not input_path.is_dir():

 print(f"Path is not a directory: {input_dir}")

 return

130 PART 2 Automating Common Computer Tasks

 # Create a list of paths matching the specified patterns.

 paths = []

 for pattern in file_patterns:

 if recursive:

 paths.extend(input_path.rglob(pattern))

 else:

 paths.extend(input_path.glob(pattern))

 if not paths:

 print("No matching files found.")

 return

 for file_path in paths:

 try:

 # Verify file is accessible.

 if not os.access(file_path, os.R_OK):

 print(f"Cannot read file {file_path}: Permission denied")

 continue

 # Open and convert the image.

 with Image.open(file_path) as img:

 # Ensure image is in RGB mode for formats that don't

support RGBA.

 if output_format.lower() in ['jpeg', 'jpg', 'jfif']:

 if img.mode in ('RGBA', 'LA'):

 img = img.convert('RGB')

 # Create the output file path.

 output_path = file_path.with_suffix(f".{output_format}")

 # Save the image in the new format.

 img.save(output_path, quality=100)

 print(f"Converted {file_path} to {output_path}")

 except Exception as e:

 print(f"Failed to convert {file_path}: {str(e)}")

 except PermissionError as pe:

 print(f"Permission error encountered: {pe}")

 except Exception as e:

 print(f"An unexpected error occurred: {e}")

CHAPTER 6 Automating Image and Video Files 131

def main():

 # Replace with your directory path.

 input_directory = r"C:\Users\Alan\Documents\Practice\Convert Rasters"

 # Mac path example

 #input_directory = "/Users/alan/Practice/Convert Rasters"

 # Raster image file types to convert

 file_types_to_convert = ["*.jpg", "*.jpeg", "*.png"]

 # Raster image output format

 output_file_type = "webp"

 # Change to False if you don't want to walk directories recursively.

 is_recursive = True

 # Call the function to convert images.

 convert_images(input_directory, file_types_to_convert, output_file_type,

is_recursive)

if __name__ == "__main__":

 main()

As with other automation scripts, it looks like a heck of a lot of code. But as usual,
much of the code is for walking the directory tree and handling exceptions. The
bulk of the work is done with minimal code, which I explain in the follow-
ing sections.

Converting files with Python
In this script, the actual conversion for one image starts with the code that reads
with Image.open(file_path) as img.

Most raster image file types — including BMP, GIF, PNG, TGA, TIFF, and WebP —
support transparency. However, JPEG, JPG, and JFIF do not. Let’s focus on the
following section of the script:

if output_format.lower() in ['jpeg', 'jpg', 'jfif']:

 if img.mode in ('RGBA', 'LA'):

 img = img.convert('RGB')

The second line looks to see if the current image color mode is RGBA or LA (both
of which support transparency) and is being converted to a format that doesn’t
support transparency. If the target file type doesn’t support transparency, then
the third line converts the image to RGB, which is compatible with JPEG and other
files that don’t support transparency. That third line is necessary to avoid an error
that would prevent the file from being converted. The transparent color will be
changed to white in the converted image.

132 PART 2 Automating Common Computer Tasks

The next lines of code define the path and filename for the converted file.
Everything but the extension remains the same as the original; the extension is
changed to match the new format. The .save() method performs the actual
conversion and writes the file. The print() statement provides feedback
onscreen when the conversion and save are successful.

Create the output file path

output_path = file_path.with_suffix(f".{output_format}")

Save the image in the new format.

img.save(output_path, quality=100)

print(f"Converted {file_path} to {output_path}")

The quality=100 setting in the preceding code saves the image at maximum
quality with no compression. If you need smaller files, you can lower the number.
For example, setting quality=90 typically reduces the file size by 20 percent to
40 percent (depending on the image resolution, size, and color complexity), but at
the cost of a 10 percent reduction in image quality — slightly less detail, color
precision, and overall clarity.

Personalizing the conversion script
To use the image conversion script, set your parameters in the main() function
as shown here:

Replace with your directory path.

input_directory = r"C:\Users\Alan\Documents\Practice\Convert Rasters"

ABOUT RGB, RGBA, AND LA
RGB (which stands for Red, Green, Blue), RGBA (which stands for Red, Green, Blue, Alpha),
and LA (which stands for Luminance, Alpha) are image modes (sometimes called color
modes or color models).

•	RGB supports virtually any color, but it does not support transparency.

•	RGBA adds the Alpha channel, which allows transparency in addition to full color.

•	LA uses a Luminance channel for grayscale and an Alpha channel for transparency.
Because it doesn’t support color, LA is used only for grayscale images that may
include transparency. It’s more compact than RGBA and is preferred when you
need transparency in grayscale images.

CHAPTER 6 Automating Image and Video Files 133

Mac path example

#input_directory = "/Users/alan/Practice/Convert Rasters"

Raster image file types to convert

file_types_to_convert = ["*.jpg", "*.jpeg", "*.png"]

Raster image output format

output_file_type = "webp"

Change to False if you don't want to walk directories recursively.

is_recursive = True

Make sure you specify the path to the starting folder in the input_directory
variable using the correct format for your operating system. I used a Windows
path, but I included a commented-out macOS path as a reminder of the syntax
that macOS requires.

Set the file_types_to_convert variable to a list of the types of files you want to
convert, enclosed in square brackets, separated by commas, with each file type
enclosed in quotation marks, as shown in the code.

Set the output_file_type to the type of file to which you want to convert by
indicating its filename extension without the leading dot.

To avoid errors, make sure your output_file_type is set to a valid raster
format, such as "bmp", "dib", "exr", "gif", "heic", "heif", "ico", "jfif",
"jpeg", "jpg", "pbm", "pgm", "png", "ppm", "psd", "raw", "tga", "tif", "tiff",
or "webp".

Finally, set is_recursive to True to convert files in subdirectories; otherwise, set
it to False to convert only images in the input directory and none of its
subdirectories.

Extracting Frames from Video Files
Our next automation can extract individual frames from a video file at any time
interval and save each frame as in image file. This allows you to create a lot of
photos from any one video file without dredging through the video one frame at a
time with a video editor.

I’ll start by showing you the script in its entirety:

extract_video_frames.py

from pathlib import Path

134 PART 2 Automating Common Computer Tasks

Need to pip install opencv-python.

import cv2

def extract_frames(video_path, interval):

 try:

 input_file = Path(video_path)

 if not input_file.exists():

 raise FileNotFoundError(f"Error: The provided video file '{video_

path}' does not exist.")

 # Create output directory.

 output_dir = f"{input_file.with_suffix('')}_frames"

 output_path = Path(output_dir)

 output_path.mkdir(parents=True, exist_ok=True)

 # Open the video file.

 cap = cv2.VideoCapture(video_path)

 if not cap.isOpened():

 raise RuntimeError("Error: Could not open video file.")

 # Get video properties and calculate the frame interval (in

frame count).

 fps = cap.get(cv2.CAP_PROP_FPS)

 frame_interval = int(fps * interval)

 saved_count = 0

 for ret, frame in iter(lambda: cap.read(), (False, None)):

 if cap.get(cv2.CAP_PROP_POS_FRAMES) % frame_interval == 0:

 saved_count += 1
 frame_filename = output_path / f"frame_{saved_count:06d}.png"

 cv2.imwrite(str(frame_filename), frame)

 print(f"Saved frame {saved_count:06d}")

 # Release resources.

 cap.release()

 print(f"Extracted {saved_count} frames to '{output_dir}'\n")

 except FileNotFoundError as e:

 print(e)

 except PermissionError as e:

 print(f"Error: Missing write permissions - {e}")

CHAPTER 6 Automating Image and Video Files 135

 except Exception as e:

 print(f"Unexpected error: {e}")

def main():

 # Replace with the path to your video file.

 video_path = r"C:\Users\Alan\Documents\Practice\Extract Frames\example.mp4"

 # Replace with the desired interval in seconds.

 interval = 10.0 # Interval in seconds

 # Call the function to extract frames.

 extract_frames(video_path, interval)

if __name__ == "__main__":

 main()

Like our other scripts, this one contains exception handling to exit the script
gracefully with an error message if the script doesn’t have sufficient permissions
to save images, or some other unforeseen problem occurs.

The bulk of the work is handled by the script named extract_frames(), defined
in the following line:

def extract_frames(video_path, interval):

The video_path parameter should be the path to the video file from which you
want to extract frames (not a folder). The interval should be expressed in seconds,
such as 0.5 to extract one frame per half-second of video, or 10 to extract one
frame every 10 seconds.

Videos protected by digital rights management (DRM) systems are encrypted to
prevent unauthorized access or copying. Attempting to open such a video with
OpenCV will likely generate an error, to protect the copyrighted material.

Importing modules for video extraction
This script uses OpenCV (short for Open Source Computer Vision Library), which
is a free, open-source software library for computer vision and image processing
used across a variety of languages. The import statement shows as simply
import cv2. But that’s misleading. For this script to work, you’ll need to create
and activate your virtual environment. Then use this command in the Terminal
to import the OpenCV library for Python:

pip install opencv-python

136 PART 2 Automating Common Computer Tasks

When you run the script, extracted images are stored in a subfolder in the same
folder as the initial video. That subfolder’s name will be the same as the video’s
filename, without the filename extension and with the word _frames appended.
For example, if you extract frames from a video named example.mp4, images
will be in a subfolder named example_frames as shown in Figure 6-1.

The code to open the video is:

cap = cv2.VideoCapture(video_path)

Subsequent code then gets the videos frames per second (fps) from the video’s
properties and calculates a frame interval for extractions using this code. The
saved_count variable is initialized to zero and is used to count saved frames, and
ensure each has a unique filename (for example, 0001.png, 0002.png, and
so forth):

fps = cap.get(cv2.CAP_PROP_FPS)

frame_interval = int(fps * interval)

saved_count = 0

Looping through a video
The main action for the frame extraction starts with a loop that goes through
each frame. The loop doesn’t stop until it hits the end of the video. That loop is
defined by the following code:

for ret, frame in iter(lambda: cap.read(), (False, None)):

FIGURE 6-1:
Images extracted

from example.
mp4 are

in example_
frames.

CHAPTER 6 Automating Image and Video Files 137

That’s quite a mouthful and not your typical for loop. The ret variable remains
True each time the loop reads a frame. When the loop reaches the end of the video,
ret returns False and ends the loop. The frame variable is the actual frame
that was read.

The line that reads lambda: cap.read() keeps calling an anonymous function
named read(), as long as there are still frames to read. The (False, None) at the
end of that line causes the loop to stop when ret becomes False, and frame
becomes None, because there are no more frames in the video.

Anonymous functions are occasionally used in Python where functions are passed
as arguments to simplify syntax and make calls inline (within a line of other
Python code).

Inside the loop, the following if statement determines whether the current
frame is at the specified time interval:

if cap.get(cv2.CAP_PROP_POS_FRAMES) % frame_interval == 0:

 saved_count += 1
 frame_filename = output_path / f"frame_{saved_count:06d}.png"

If the condition is True, saved_count is incremented, and the frame is given an
output path and filename based on that count.

The .png extension in the code saves each frame as a .png file. You can change
that to save in other formats, including .bmp, .jpeg, .jpg, .tif, .tiff, and .webp.

Finally, these two lines actually save the image file, and also provide some feed-
back onscreen so you can see the progress as the script is running:

cv2.imwrite(str(frame_filename), frame)

print(f"Saved frame {saved_count:06d}")

When the loop reaches the end of the video, the following lines are executed.

Release resources

cap.release()

print(f"Extracted {saved_count} frames to '{output_dir}'\n")

The cap.release() closes the video stream and frees up resources being used by
the video. Then the print() statement shows a completion message onscreen.

138 PART 2 Automating Common Computer Tasks

Tweaking the video conversion script
To use the video extraction script, you just need to define two parameters in the
main() function, as follows:

def main():

 # Replace with the path to your video file.

 video_path = r"C:\Users\Alan\Documents\Practice\Extract Frames\example.mp4"

 # Replace with the desired interval in seconds.

 interval = 10.0 # Interval in seconds

Set the video_path variable to the video file from which you want to extract
frames. Unlike other scripts, this one doesn’t walk directories, because you could
conceivably extract thousands of frames from one on video. Working with one
video at a time is your safest bet.

OpenCV supports most video types, including .avi, .flv, .mkv, .mov,.mp4,
.mpeg, .webm, and .wmv. You can use a file with any of those extensions in your
video_path variable.

Keep in mind that every second of video contains about 30 individual frames
(images). A one-minute video contains about 1,800 frames. A ten-minute video,
about 18,000 frames! When specifying your interval variable, you can use
whole numbers or decimal numbers. For example, setting interval to 1 takes
images at one-second intervals. Setting interval to 0.5 takes one image every
half-second. Setting interval to 1.5 takes an image every 1.5 seconds.

Keep in mind that the shorter the interval, the more frames you’ll generate. Each
frame you generate could easily be an image file that’s 3MB or more in size.
For example, if you capture a frame every second in a ten-minute video, you’ll
generate 600 image files!

CHAPTER 7 Automating Mouse and Keyboard 139

Chapter 7
Automating Mouse
and Keyboard

In this chapter, you investigate techniques for automating the mouse and key-
board. These techniques allow you to simulate human input for tasks like
graphical user interface (GUI) testing, data entry, or repetitive workflows where

you need to type the same thing over and over.

PyAutoGUI (short for Python Automation for Graphical User Interfaces) is the
main library we’ll use for these scripts. It’s not part of the standard library. You’ll
need to pip install it yourself. I suggest you create a folder for the script (or all
scripts that use PyAutoGUI); then create a virtual environment and activate that
virtual environment (see Chapter 2). Then make sure you enter this command at
the VS Code Terminal:

pip install pyautogui

If you want to try out all the scripts in this chapter, you can create each one in that
same sample folder to share the PyAutoGUI module.

IN THIS CHAPTER

	» Automating mouse and keyboard

	» Typing text from a Python script

	» Creating your own shortcut keys

	» Taking screenshots automatically

140 PART 2 Automating Common Computer Tasks

Granting Permissions on a Mac
By default, Mac computers generally won’t allow apps to take control of your
mouse or keyboard. On macOS, the first time you try to run a script in this
chapter, a permission error may display onscreen, saying the app doesn’t have
sufficient permissions. Or you may see that the script is running in the VS Code
Terminal, but the mouse isn’t moving onscreen.

For mouse and keyboard operations to work on a Mac, you may need to give
accessibility permissions to your code editor. Click the Apple icon in the upper-left
corner of your screen and choose System Settings; in System Settings, click
Privacy & Security, and then click Accessibility. Set the slider next to your code
editor’s name to On. In Figure 7-1, I granted permission to Visual Studio Code,
since I’m using VS Code as my editor. Enter your password or use Touch ID to
make changes if prompted. If you’re using a different editor, you may need
to grant permission to that editor.

FIGURE 7-1:
Allowing VS

Code to control
the mouse.

CHAPTER 7 Automating Mouse and Keyboard 141

Moving the Mouse, Clicking, Dragging,
and Scrolling

Python can take control of your mouse and do anything you’d otherwise do by
hand. That includes moving the mouse pointer, clicking, double-clicking, right-
clicking, dragging, and scrolling. The library that grants you these powers is
PyAutoGUI.

As I mention at the start of this chapter, PyAutoGUI isn’t included in the Python
standard library. So, make sure you create and activate a virtual environment for
this script (if you haven’t already done so), and then enter the following command
in the Terminal:

pip install pyautogui

Understanding screen coordinates
PyAutoGUI lets you move the mouse pointer to any location on the screen based
on X, Y coordinates, where X is the distance from the left side of the screen, and Y
is the distance from the top. The unit of measure is the pixel, where each pixel is
one tiny lighted dot on your screen.

The word pixel is short for picture element. A computer screen that’s 1,980 x 1,280
is 1,930 pixels across and 1,280 pixels tall.

The very upper-left corner of the screen is position 0,0. The lower-right corner of
the screen is whatever your screen resolution happens to be, minus 1 for each
coordinate (because the counting starts at 0). So, if you have a 2K QHD computer
monitor with a resolution of 2,560 x 1,440, the lower-right corner of your screen
is 2559,1439.

Controlling the mouse speed
PyAutoGUI can move the mouse at a very high rate of speed. That can work against
you if the mouse starts doing crazy things that you don’t want. To slow things
down, you can specify how long any operation takes. That way you can see what’s
going on and keep an eye on things. You do so by adding a duration= parameter to
your move command. Here’s the syntax:

pyautogui.move (x, y, duration= duration)

142 PART 2 Automating Common Computer Tasks

Replace duration in the preceding line with the number of seconds the action
should take.

In the move(x, y) method, x is the distance from the left side of the screen, in
pixels, to move the mouse pointer; y is the distance from the top, in pixels, to
move the mouse pointer.

In the following code, the first line moves the mouse pointer to coordinates 1,1
near the upper-left corner of the screen and takes about half a second to do so.
The second line moves the mouse pointer down, and to the right, 900 pixels, and
takes 1 second to do so:

pyautogui.moveTo(1, 1, 0.5)

pyautogui.moveTo(900, 900, 1)

Stopping a wild mouse
If PyAutoGUI ever starts doing something that you don’t want, you can stop it
immediately by grabbing the mouse and moving the mouse pointer yourself to
any corner of the screen.

PyAutoGUI itself will trigger that instant fail-safe stop, even when it moves the
mouse pointer to any corner of the screen. You always want to make sure you
don’t do that unintentionally in your code. In the sample code earlier, I started by
moving the mouse pointer to 1,1 rather than 0,0 to avoid triggering that fail-safe
condition.

The fail-safe feature is enabled automatically whenever you use PyAutoGUI in a
script. You can disable it by setting pyautogui.FAILSAFE to False, but doing so is
risky because it prevents you from stopping the script if the mouse pointer starts
doing things you didn’t intend.

Finding the screen locations of things
If you want to use PyAutoGUI to control the action in a specific app, you need to
know exactly where everything is on the screen in that app. You’ll also want to
make sure you always maximize the app window, so the screen coordinates are
always the same whenever finding the locations of items and when running
the script.

To locate coordinates of elements onscreen, use the PyAutoGUI MouseInfo app. To
run it, make sure you’re in a virtual environment where you’ve already installed

CHAPTER 7 Automating Mouse and Keyboard 143

PyAutoGUI, and create a script named pyautogui_mouseinfo.py (or something
similar that doesn’t conflict with any imports), and add the following code:

pyautogui_mouseinfo.py

Make sure you pip install pyautogui.

import pyautogui

Open the MouseInfo window.

pyautogui.mouseInfo()

Comments in code are always optional. The comments in the preceding code are
just there for reminders.

Run that script using the Run Python File button in VS Code, as usual. You should
see a window that looks like Figure 7-2 on your screen. As you move the mouse
pointer around the screen, the XY Position field shows the XY coordinates at the
tip of the mouse pointer.

You can jot down the name and X, Y coordinate of whatever the mouse pointer is
touching as you go along. Optionally, you can click Log XY in the MouseInfo app,
and then, within 3 seconds, move the mouse pointer to the position you want to
measure. A log file will record the X, Y coordinate for you. However, there won’t be
any descriptive text, so you’ll probably want to jot that down as you go along.

When you’ve finished measuring, click Save Log in the MouseInfo app. By default,
the file will be named mouseInfoLog.txt and likely saved in the same folder as

FIGURE 7-2:
The MouseInfo

app included with
PyAutoGUI.

144 PART 2 Automating Common Computer Tasks

your pyautogui_mouseinfo.py script. In VS Code, you can see the contents of that
folder just by clicking the mouseInfoLog.txt.

Using mouse control with a specific app
The automated mouse action you get from PyAutoGUI always runs in the active
window (whatever app is in the forefront on the screen). Any time you want to use
PyAutoGUI in a specific app, first open that app and maximize its window, to
ensure the X, Y coordinates of elements on the screen are consistent.

When your app is open, you can open VS Code (or whatever code editor you’re
using) and start your Python script. You can give yourself a couple seconds to
bring the other app to the screen by using a timer to pause the Python script
before it takes control of the mouse, so you have time to bring the app of interest
back onto the screen by clicking its Dock or Taskbar icon.

Later in this chapter, I show you how to use a command like time(5) to pause the
Python script in the example script.

Trying out mouse control
There is no universal screen we can all access for me to use as an example to illus-
trate a practical example of mouse control. But here’s a sample script with lots of
comments to illustrate methods for moving the mouse and clicking on the screen
no matter what’s showing on the screen at the moment:

move_mouse.py

Must pip install pyautogui.

import pyautogui

import time

FailSafe is True by default, set here for clarity.

pyautogui.FAILSAFE = True

Add a 2-second pause after each pyautogui command.

pyautogui.PAUSE = 2

def mouse_operations():

 try:

 # Get screen size for reference.

 screen_width, screen_height = pyautogui.size()

 print(f"Screen size: {screen_width}x{screen_height}")

CHAPTER 7 Automating Mouse and Keyboard 145

 # Get center of screen.

 center_x, center_y = screen_width // 2, screen_height // 2

 print(f"Center of screen: ({center_x}, {center_y})")

 # Moving the mouse

 print("Moving mouse pointer to center of screen...")

 pyautogui.moveTo(center_x, center_y, duration=1)

 # Move in a square to 90 percent of the screen.

 print("Moving the mouse pointer in a square...")

 pyautogui.moveTo(.1*screen_width,.1*screen_height)

 pyautogui.moveTo(.9*screen_width,.1*screen_height, duration=1)

 pyautogui.moveTo(.9*screen_width,.9*screen_height, duration=1)

 pyautogui.moveTo(.1*screen_width,.9*screen_height, duration=1)

 pyautogui.moveTo(.1*screen_width,.1*screen_height, duration=1)

 # Move to the center of the screen.

 print("Moving back to center of the screen...")

 pyautogui.moveTo(center_x, center_y, duration=1)

 # Move relative to current position.

 print("Moving mouse pointer 300 pixels left and 100 pixels up...")

 pyautogui.moveRel(-300, -100, duration=1)

 # Clicking

 print("Performing a left click...")

 pyautogui.click()

 pyautogui.press('esc')

 time.sleep(1)

 # Double-clicking

 print("Performing a double click...")

 pyautogui.doubleClick()

 pyautogui.press('esc')

 time.sleep(1)

 # Right-clicking

 print("Performing a right click...")

 pyautogui.rightClick()

 time.sleep(1)

 # Pressing keys

 print("Pressing Escape to close any context menu...")

 pyautogui.press('esc')

146 PART 2 Automating Common Computer Tasks

 # Scrolling (not universally supported)

 print("Scrolling toward bottom...")

 pyautogui.scroll(-2000)

 time.sleep(3)

 print("Scrolling toward top...")

 pyautogui.scroll(4000)

 time.sleep(3)

 print("All operations completed successfully!\n")

 except pyautogui.FailSafeException:

 print("\nScript aborted by moving mouse to corner.\n")

 except Exception as e:

 print(f"An error occurred: {e}")

if __name__ == "__main__":

 message = "Script will start in 5 seconds.\n"

 message += "To cancel, move the mouse pointer to any corner."
 print(f"\n\n{message}")

 # Pause for 5 seconds before calling the function.

 time.sleep(5)

 mouse_operations()

Near the top of that script, the line that reads import time allows you to set tim-
ers to delay execution of the next line of code. The time module is in the standard
library, so you don’t need to pip install it. Near the bottom of the script, the
line that reads time.sleep(5) pauses execution for five seconds, giving you a
few seconds to prepare the screen when you want to run a script on a specific app
or document on the screen.

Typing Text with Python
PyAutoGUI can simulate human keyboard input by typing text and pressing short-
cut keys. It types at the current cursor position in the active window, just like
when you type yourself. That will likely be VS Code if you run a script from VS
Code. If you don’t want PyAutoGUI to type inside your Python script, here’s a way
you can test it safely:

CHAPTER 7 Automating Mouse and Keyboard 147

1.	 Open Microsoft Word or any other app in which you normally type
(Pages, Google Docs, Notepad, TextEdit), and leave that window open.

2.	 Open VS Code if you haven’t already.

3.	 In your script, set a timer to pause code execution before the script runs,
to give yourself time to switch windows.

For example, time.sleep(5) pauses for five seconds.

4.	 Run your script in the usual manner in VS Code.

5.	 Switch to the window in which you want the script to type.

If the script will be typing into a form, click inside the first form field.

When using a script to fill in a form, it’s best to use the Tab key to move from one
field to the next. That way, you don’t need to know the exact screen position of
each field in which you want to type.

Controlling the typing speed
To type text with PyAutoGUI, use the .write() method. The text will type at light-
ning speed. Here’s an example:

pyautogui.write("Hello World")

If you need to slow down the typing, add an interval= parameter and the number
of seconds to pause between each typed character. For example, if you want to
delay by half a second, type the code like this:

pyautogui.write("Hello World", interval=0.5)

Typing long passages of text
If you want to type long passages of text with line breaks and such, your best bet
it to put that text in a variable first. Then put the name of the variable between the
parentheses, without quotation marks.

Python allows you to put long passages of text with line breaks inside triple quo-
tation makes. Although it’s often used for lengthy comments, you can also store
long passages of text with line breaks using triple quotation marks. You can use
either double quotation marks, like """ or single quotation marks like '''. Just make
sure you use the same type to start and end the text.

148 PART 2 Automating Common Computer Tasks

For example, here’s a long passage of text that contains line breaks, stored in a
variable named long_message. The pyautogui.write() statement types the text
with a tenth of a second delay between each character:

long_message = """Enclose longer passages of text like this,

with line breaks if you like, inside triple quotation marks.

Then to have Python type the text, put the variable

name inside the parentheses of .write()."""

pyautogui.write(long_message, interval=0.1)

Pressing special keys
To type special keys, like Enter or Tab, use pyautogui.press() with the name of
the key to press, in quotation marks, inside the parentheses. The key names
include "enter", "tab", "space", "backspace", "delete", "esc", "win", "up",
"down", "left", "right", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",
"f10", "f11", "f12", "home", "end", "pageup", and "pagedown".

As an example, here’s some code to type some text, press Enter, press Tab, type
some more text, press Enter, and type one more line of text:

pyautogui.write("This is a line of text.")

pyautogui.press("enter")

pyautogui.press("tab")

pyautogui.write("This line is indented.")

pyautogui.press("enter")

pyautogui.write("One final line of text.")

The output is three lines of text with the middle line indented, like this:

This is a line of text.

 This line is indented.

One final line of text.

Pressing hotkeys
PyAutoGUI offers a hotkeys() method for typing shortcut keys that often
involve two or more key presses. That includes the Shift, Ctrl, Alt, and Windows
keys in Windows (typed as "shift", "ctrl", "alt", and "win" in PyAutoGUI).
On macOS, you can use the Command, Option, and Control keys (typed as
"command", "option", and "ctrl" on a Mac).

CHAPTER 7 Automating Mouse and Keyboard 149

As you probably know, in Windows, you press Ctrl+C to copy text. To do that in
PyAutoGUI, use the command pyautogui.hotkey('ctrl', 'c'). On macOS,
use ⌘  +C to copy text. In PyAutoGUI the command is pyautogui.hotkey
('command', 'c').

PyAutoGUI also lets you hold down one key for as long as you need, via the
.keyDown() method. To release the key, use the .keyUp() method.

pyautogui.keyDown('shift')

Keep it held for 2 seconds.

time.sleep(2)

Release the Shift key.

pyautogui.keyUp('shift')

Detecting the operating system
If you ever want to write an app that presses shortcut keys correctly both on
Windows and on macOS, you can use the platform module with .system to detect
on which operating system the script is running. You don’t need to pip install
that module — just import it into your script. For example, here’s some code that
uses Ctrl+key shortcuts when running on Windows, and Command+key shortcuts
when running on macOS.

The code refers to macOS as Darwin because the platform module prioritizes the
kernel name over the operating system name. macOS is a Unix-like operating
system, which, at its core, uses a kernel named Darwin to handle interaction
between hardware and software.

import pyautogui

import platform

pyautogui.FAILSAFE = True

pyautogui.PAUSE = 0.1

Select, copy, and paste the text on a Mac.

if platform.system() == 'Darwin':

 # Select all in current document.

 pyautogui.hotkey('command', 'a')

 # Copy selected text.

 pyautogui.hotkey('command', 'c')

 # Move to the end of the document.

 pyautogui.hotkey('command', 'down')

 # Move to the next line.

150 PART 2 Automating Common Computer Tasks

 pyautogui.press('enter')

 # Paste the copied text.

 pyautogui.hotkey('command', 'v')

Select, copy, and paste the text on Windows.

elif platform.system() == 'Windows':

 # Select all in current document.

 pyautogui.hotkey('ctrl', 'a')

 # Copy selected text.

 pyautogui.hotkey('ctrl', 'c')

 # Move to end of document.

 pyautogui.hotkey('ctrl', 'end')

 # Move to the next line.

 pyautogui.press('enter')

 # Paste the copied text.

 pyautogui.hotkey('ctrl', 'v')

The shortcut keys for Linux generally duplicate those for Windows. If you want
to support Linux, you can probably get away with changing elif platform.
system() == 'Windows': to else: to cover both Windows and Linux. There are
multiple GUIs for Linux, including GNOME, KDE Plasma, XFCE, Cinnamon, and
others. You may want to test things out on whichever GUI you’re using, just
to be sure.

Detecting Keystrokes
Whenever you’re running a Python script in VS Code, you can press Ctrl+C to stop
code execution, but only if VS Code (or whatever editor/Terminal you’re using) is
in the active window. If you’re using Python to automate other apps, you may
want to be able to detect keystrokes from other windows. The pynput module lets
Python detect keystrokes on the operating system level. In other words, pynput
can detect keystrokes from windows other than the window from which you
launched your Python script.

The pynput module isn’t part of the standard library. Make sure you pip install
pynput to your virtual environment before creating scripts that import that module.

As with PyAutoGUI used in this chapter, you’ll need to enable Accessibility fea-
tures on a Mac for pynput to work. See “Granting Permissions on a Mac,” earlier
in this chapter, for details.

To illustrate how pynput works, the following script will stop the currently run-
ning Python script from any open window in Linux, macOS, or Windows when the
user presses the Escape key (esc in the code):

CHAPTER 7 Automating Mouse and Keyboard 151

listen_esc.py

You must pip install pynput for this to work.

from pynput import keyboard

import sys

def on_press(key):

 # Check if the Esc key is pressed.

 if key == keyboard.Key.esc:

 print(f'Esc key detected! Stopping the script...')

 # Stop the listener and exit the script

 sys.exit(0)

Set up the keyboard listener.

print(f'Press Esc in any window to stop')

with keyboard.Listener(on_press=on_press) as listener:

 listener.join()

Notice the function named on_press(key). Whenever the preceding script is
running, the key parameter in parentheses receives the last key pressed on the
keyboard, no matter what window you’re in. The line that reads if key ==
keyboard.Key.esc is True when you press Esc, so the function simply prints a
little feedback and stops script execution with sys.exit(0).

The most complicated code is probably with keyboard.Listener(on_press=on_
press), which creates a pynput listener that can detect every key pressed at the
keyboard. The on_press=on_press bit says to call the function names on_press
every time a key is pressed. Whatever key was pressed is then passes to that func-
tion as the key parameter.

The as listener part simply names that keyboard listener listener. The
listener.join() activates the listener by temporarily blocking the Python script
from being the only one listening for keystrokes, so the listener can monitor key-
strokes globally, across all open windows. That listener stays in effect until sys.
exit(0) terminates the Python script, which also terminates the listener.

Creating Your Own Keyboard Shortcuts
If you want to create custom shortcut keys that you can call from any app or
window, you can use pynput (described earlier) to listen for the key combinations.
Try not to replace commonly used shortcuts, like Ctrl+C or ⌘  +C for Copy in
Windows or Mac, respectively, or things could become very confusing when
you’re calling your Python script rather than doing the shortcut key’s original task!

152 PART 2 Automating Common Computer Tasks

If you’re targeting a specific app for your shortcut key action, you can ask artificial
intelligence (AI) whether the shortcut key you’re planning to use already has
some role in that app.

For unknown reasons, pynput doesn’t always play nicely with Microsoft Word. If
you’re looking to create shortcut keys for Windows, consider using a macro in
Word instead. If you don’t know how, just ask any AI.

In this next script, we’ll use pynput to listen for the shortcut key. We’ll also allow
you to end the script by pressing the Escape key. So basically, after you start the
script, you can go to any other app and use the shortcut key to type your text, as
long as the script is running. Press Escape to end the script and stop listening for
the shortcut key.

First, I’ll show you the entire script; then I’ll explain how it works.

shortcut_key.py

pip install pynput and pyautogui

from pynput import keyboard

import pyautogui

import sys

import platform

import time

Define hotkeys for typing boilerplate text.

windows_hotkey = '<ctrl>+<alt>+t'
mac_hotkey = '<cmd>+<shift>+t'
Define boilerplate text and hotkeys for Windows, Mac.

boilerplate_text = """Hello, this text was typed by pynput!

 You can make this any length and any number of lines."""

def type_boilerplate():

 time.sleep(0.5)

 pyautogui.write(boilerplate_text, interval=0.05)

def exit_script():

 print("Esc pressed. Exiting...")

 sys.exit(0)

def main():

 # Set up the hotkey based on the operating system.

 system = platform.system()

 # Mac shortcut key

CHAPTER 7 Automating Mouse and Keyboard 153

 if system == 'Darwin':

 hotkey = mac_hotkey

 else:

 # Windows/Linux shortcut key

 hotkey = windows_hotkey

 # Set up the hotkeys dictionary and what each calls.

 hotkeys = {

 hotkey: type_boilerplate,

 '<esc>': exit_script

 }

 # Start listening.

 print(f"Listening for {hotkey}. Press Esc to end...")

 with keyboard.GlobalHotKeys(hotkeys) as listener:

 listener.join()

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt:

 print("\nExiting...")

 sys.exit(0)

The following block of code is where you define your hotkeys. You can define as
many hotkeys as you want. I’ve done two — one for typing boilerplate text and
one for exiting the script. If you want to support both macOS and Windows, you’ll
have to define hotkeys for each, as I’ve done here:

Define hotkeys for typing boilerplate text.

windows_hotkey = '<ctrl>+<alt>+t'
mac_hotkey = '<cmd>+<shift>+t'

I’ve set up Ctrl+Alt+T for the Windows hotkey and ⌘  +Shift+T for the Mac. That
key combination isn’t used for anything important, as far as I know. So, I’m
not replacing some commonly used shortcut key with my own.

The syntax requires that the modifier keys ctr, alt, and cmd (command) be
enclosed in angle brackets, while the regular letter t isn’t in angle brackets.

For my example, I’m going to have the shortcut key type some text into whatever
app I happen to be using. Frequently typed text is sometimes called boilerplate text,
so I’ve used the variable name boilerplate_text to hold mine. You can type any

154 PART 2 Automating Common Computer Tasks

text you want, and any number of lines of text, between the triple quotation marks
when writing your own code.

Define boilerplate text and hotkeys for Windows, Mac.

boilerplate_text = """Hello, this text was typed by pynput!

 You can make this any length and any number of lines."""

Define the action that you want the shortcut key to perform in a function. In my
case, I’ve created a function named type_boilerplate(), as shown next. The
time.sleep() line provides a half-second delay before typing, to allow a little
time for the cursor to get into position before the typing begins:

def type_boilerplate():

 time.sleep(0.5)

 pyautogui.write(boilerplate_text, interval=0.05)

I’ll pair that function with the hotkey a little later in the code. But let me briefly
explain the rest. This next function, when called, simply exits the script. I’ll pair
that with the Escape key later. Because that’s not a combination keystroke and is
the same on Windows and macOS, you don’t need to define it as a “special key.”

def exit_script():

 print("Esc pressed. Exiting...")

 sys.exit(0)

Next, we need to define the hotkey the script will use, depending on whether the
script is running on macOS, Windows, or Linux (which generally uses the same
keys as Windows). That’s done in this block of code, where the variable named
hotkey gets the appropriate key combination for the current operating system:

def main():

 # Set up the hotkey based on the operating system.

 system = platform.system()

 # Mac shortcut key

 if system == 'Darwin':

 hotkey = mac_hotkey

 else:

 # Windows/Linux shortcut key

 hotkey = windows_hotkey

Next, we can pair keys with functions we defined earlier. Here’s a dictionary
named hotkeys that pairs hotkey with the type_boilerplate function, and the
Escape key (<esc>) with the exit_script function:

CHAPTER 7 Automating Mouse and Keyboard 155

 # Set up the hotkeys dictionary and what each calls.

 hotkeys = {

 hotkey: type_boilerplate,

 '<esc>': exit_script

 }

Finally, the main() function tells the script to print a little text identifying which
keys the script is listening for. Then it sets up the listener to listen for the keys
defined in the hotkeys dictionary:

print(f"Listening for {hotkey}. Press Esc to end...")

with keyboard.GlobalHotKeys(hotkeys) as listener:

 listener.join()

The rest of the code runs the main() function to activate the hotkeys when you
run the script. The try block detects when the script was ended by pressing
Escape, and prints a friendly Exiting... message in the Terminal instead of
just stopping the script abruptly with no additional feedback.

Automating Screenshots
Taking screenshots is easy, thanks to the Snipping Tool in Windows and the
Screenshot app on macOS. But what if you want to take screenshots automatically
during some long-running process? Well, you can do that, too, with Python,
thanks to PyAutoGUI. As with other apps in this chapter, you’ll need to grant
accessibility rights on a Mac, as discussed near the start of this chapter.

One caveat to taking screenshots is that the script needs access to pyscreeze,
which is a component of the Pillow library. So, even though you don’t see Pillow
in the script’s imports, you do need to install that into your virtual environment
for the script to work. This script also requires PyAutoGUI so make sure you install
both by entering this command at the Terminal when you’re in your virtual
environment:

pip install pillow pyautogui

I’ll start by showing you the entire script for automatic screenshots next. Then I’ll
point out key features and personalization in the following sections. Here’s the
script in its entirety:

auto_screenshots.py

pip install pillow pyautogui for this script

156 PART 2 Automating Common Computer Tasks

import pyautogui

import time

from datetime import datetime

from pathlib import Path

pyautogui.PAUSE = 0.1

def take_screenshot(save_path: Path):

 # Get current timestamp for filename.

 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

 filename = f"screenshot_{timestamp}.png"

 full_path = save_path / filename

 try:

 # Take screenshot and save it.

 screenshot = pyautogui.screenshot()

 screenshot.save(full_path)

 print(f"Screenshot saved to {full_path}")

 return full_path

 except Exception as e:

 print(f"Error taking screenshot: {e}")

 return None

def start_recording(save_path: Path, time_delay):

 # Create screenshots directory if it doesn't exist.

 if not save_path.exists():

 save_path.mkdir(parents=True, exist_ok=True)

 try:

 while True:

 take_screenshot(save_path)

 time.sleep(time_delay)

 except KeyboardInterrupt:

 return False

def main():

 # Where to save screenshots

 save_path = Path(R"C:\Users\Alan\Documents\Practice\Auto Screenshots")

 # For macOS�/Linux, make sure to change the path to a valid one with write

permissions.

 # save_path = Path("/Users/alan/Practice/Auto Screenshots")

 # How many seconds between each screenshot

 time_delay = 5 # seconds

CHAPTER 7 Automating Mouse and Keyboard 157

 # Start the screenshot recording.

 print("\nTaking Screenshots.\nPress Ctrl+C here to stop the recording.\n")
 recording = start_recording(save_path, time_delay)

 # Message shown when recording was stopped with Ctrl+C
 if not recording:

 print("\nRecording stopped")

if __name__ == "__main__":

 main()

Taking screenshots with Python
The take_screenshot() function in the screenshots script does the work of tak-
ing the screenshot and saving screenshots. When called, it generates a filename
using datetime.now(). Then it appends that to the path to which the file should
be saved using the following code:

def take_screenshot(save_path: Path):

 # Get current timestamp for filename.

 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

 filename = f"screenshot_{timestamp}.png"

 full_path = save_path / filename

The actual screenshot is taken using screenshot = pyautogui.screenshot()
and saved using the screenshot. save(full_path) line:

Take screenshot and save it.

screenshot = pyautogui.screenshot()

screenshot.save(full_path)

The rest of the code provides printed feedback in the Terminal while the script
is running.

The automation part happens in the start_recording() script, which first cre-
ates the folder (if it doesn’t already exist) to which the screenshots are saved.
Then the script uses a simple while True loop to keep calling take_screenshot()
until you press Ctrl+C in the Terminal window to stop the script.

def start_recording(save_path: Path, time_delay):

 # Create screenshots directory if it doesn't exist.

 if not save_path.exists():

 save_path.mkdir(parents=True, exist_ok=True)

158 PART 2 Automating Common Computer Tasks

 try:

 while True:

 take_screenshot(save_path)

 time.sleep(time_delay)

 except KeyboardInterrupt:

 return False

Personalizing the auto screenshot script
The auto screenshot script is ready to go on any operating system. To make it your
own, just set the save_path variable to the path to which you want to save the
screenshots using the syntax shown in the main() function. Use the time_delay
variable to specify how many seconds to pause between each screenshot.

def main():

 # Where to save screenshots

 save_path = Path(R"C:\Users\Alan\Documents\Practice\Auto Screenshots")

 # For macOS/Linux, make sure to change the path to a valid one with write

permissions.

 # save_path = Path("/Users/alan/Practice/Auto Screenshots")

 # How many seconds between each screenshot

 time_delay = 5 # seconds

Make sure you specify a folder to which Python has write permissions, so the
script can save files without generating an error.

CHAPTER 8 Automating the Office 159

Chapter 8
Automating the Office

In this chapter, you automate common office apps and tasks, particularly
Microsoft Word, Microsoft Excel, and PDFs. You find techniques for creating
new files, opening existing files, and adding content to files. I also show you a

script that can add a watermark image to every page of a PDF.

Automating Microsoft Word
You can create, open, add content to, and save Word documents with Python. If
you find yourself doing any of those tasks repetitively, you’ll appreciate the first
script in this chapter, which does all those things.

For our first script, we’ll use the python-docx module to create, open, add content
to, and save a Word document. In the code, you’ll see a line that reads from docx
import Document, but that’s a little misleading. The actual name of the module is
python-docx. To use this script, make sure you activate your virtual environment
and enter the following command in the Terminal:

pip install python-docx

Here’s the script in its entirety:

create_open_word.py

You must pip install python-docx.

from docx import Document

IN THIS CHAPTER

	» Automating Microsoft Word and
Microsoft Excel

	» Creating, opening, and
watermarking PDFs

160 PART 2 Automating Common Computer Tasks

from pathlib import Path

import os

import sys

Here is where you define what you want to put into the document.

def add_content(doc: Document) -> None:

 try:

 doc.add_heading('Sample Document', level=1)

 doc.add_paragraph('This is a sample paragraph added to the document.')

 doc.add_paragraph('Created using python-docx on Windows or macOS.')

 print("Content added to the document.")

 except Exception as e:

 print(f"Error adding content to document: {e}")

 raise

Create the folder path if it doesn't exist.

def ensure_path_exists(folder_path: str) -> Path:

 try:

 path = Path(folder_path).resolve()

 path.mkdir(parents=True, exist_ok=True)

 return path

 except OSError as e:

 print(f"Error creating directory {folder_path}: {e}")

 raise

Ensure the filename has a .docx extension.

def validate_file_name(file_name: str) -> str:

 if not file_name.lower().endswith('.docx'):

 file_name += '.docx'
 return file_name

Open an existing .docx file or create a new one.

def open_or_create_docx(folder_path: Path, file_name: str) -> Document:

 file_path = folder_path / file_name

 # Returns the Document object.

 try:

 if file_path.exists():

 print(f"Opening existing document: {file_path}")

 return Document(file_path)

 else:

 print(f"Creating new document: {file_path}")

 doc = Document()

 doc.save(file_path) # Initialize the file

 return doc

CHAPTER 8 Automating the Office 161

 except Exception as e:

 print(f"Error opening or creating document {file_path}: {e}")

 raise

Save the document to the specified path.

def save_document(doc: Document, file_path: Path) -> None:

 try:

 doc.save(file_path)

 print(f"Document saved successfully: {file_path}")

 except Exception as e:

 print(f"Error saving document {file_path}: {e}")

 raise

Open the file in the default application on Windows or macOS.

def open_file(file_path: Path) -> None:

 try:

 if sys.platform.startswith('win'):

 os.startfile(str(file_path))

 elif sys.platform.startswith('darwin'):

 # Use os.system instead of subprocess to open the file on macOS

 os.system(f'open "{file_path}"')

 else:

 print�("Unsupported OS for auto opening the file. Please open

manually:", file_path)

 except Exception as e:

 print(f"Error opening the file {file_path}: {e}")

 raise

Uses all the preceding functions to create or open a Word document and

add content

def process_document(folder_path: str, file_name: str) -> None:

 try:

 path = ensure_path_exists(folder_path)

 file_name = validate_file_name(file_name)

 file_path = path / file_name

 doc = open_or_create_docx(path, file_name)

 add_content(doc)

 save_document(doc, file_path)

 open_file(file_path)

 except Exception as e:

 print(f"Failed to process document: {e}")

 raise

162 PART 2 Automating Common Computer Tasks

Specify your path and filename here.

def main():

 # Windows path

 folder_path = R"C:\Users\Alan\Documents\Practice\Word Docs"

 # macOS path

 # folder_path="/Users/alan/Documents/Practice/Word Docs"

 file_name = "Sample Generated.docx"

 # Create or open the document and add content.

 process_document(folder_path, file_name)

if __name__ == "__main__":

 main()

The script is organized into several functions, with exception handling to handle
any unforeseen problems like insufficient permissions for creating or saving doc-
uments. Making the script your own is mostly about defining the location and
name of the Word document you want to create or modify, as well as the content
you want to put into the document.

Naming your Word document
The main() function is where you specify the filename and location of your Word
document. If you specify a folder or document that doesn’t exist, the script creates
the folder and document for you. If you specify an existing Word document, the
script opens that document and adds your content to that document. Use the
main() function to specify your path and filename:

Specify your path and filename here.

def main():

 # Windows path

 folder_path = R"C:\Users\Alan\Documents\Practice\Word Docs"

 # macOS path

 # folder_path="/Users/alan/Documents/Practice/Word Docs"

 file_name = "Sample Generated.docx"

I’ve included both Windows and macOS paths as example code. Be sure to use the
right syntax for your operating system, as well as a folder for which you have
write permissions.

CHAPTER 8 Automating the Office 163

Defining your Word content
The add_content() function is where you add code to define the content you want
to type into the Word document. I’ve presented a simple example adding a head-
ing with doc.add.heading(), and a couple of paragraphs with doc.add.
paragraph():

Here is where you define what you want to put into the document.

def add_content(doc: Document) -> None:

 try:

 doc.add_heading('Sample Document', level=1)

 doc.add_paragraph('This is a sample paragraph added to the document.')

 doc.add_paragraph('Created using python-docx on Windows or macOS.')

 print("Content added to the document.")

 except Exception as e:

 print(f"Error adding content to document: {e}")

 raise

I’ve intentionally added minimal text in this example so as not to overcomplicate
the code, but you can add any element type to any Word document using similar
code. For the full range of possibilities, check out the python-docx code at
https://python-docx.readthedocs.io.

Here are some of the things you can do with python-docx in Word documents:

	» Add, change, or delete paragraphs.

	» Change the alignment, indentation, or line spacing of paragraphs.

	» Insert text formatting like bold and italic.

	» Add, change, or remove headings.

	» Create tables with a specified number of rows and columns.

	» Populate table cells with text or other content.

	» Edit cell content, merge cells, or adjust table properties.

	» Insert, replace, or resize images.

	» Create bulleted or numbered lists.

	» Add content to headers and footers, including text or images.

	» Insert page breaks to start a new page.

	» Change font properties including size, color, and typeface.

	» Apply or modify paragraph styles (for example, Normal or Title).

https://python-docx.readthedocs.io/

164 PART 2 Automating Common Computer Tasks

Just about anything you can do in Word you can automate with Python and
python-docx. Most artificial intelligence (AI) can easily write the code for you as
well. Start your AI prompt with “Write Python python-docx code to . . . ” and
describe exactly what you want the code to do.

Automating Microsoft Excel
Just as you can create and edit Word documents with Python, you can do the same
with Excel. You’ll need the openpyxl module, which isn’t part of the standard
library. So, after you create and activate your virtual environment, enter the fol-
lowing command in the Terminal:

pip install openpyxl

This is a sample script to automate Excel. It has capabilities similar to those for
automating Word. You can use it to create a new Excel workbook or open and
modify an existing workbook. This script is organized into functions that perform
specific tasks, like creating necessary folders, catching exceptions, and entering
content into a workbook. Here’s the entre script:

create_open_excel.py

You must pip install openpyxl.

from openpyxl import Workbook, load_workbook

from pathlib import Path

import os

import sys

Here is where you define what you want to put into the workbook.

def add_content(wb) -> None:

 try:

 ws = wb.active

 ws.title = "Sample Data"

 # Add header row.

 ws.append(["ID", "Name", "Value"])

 # Add sample rows.

 ws.append([1, "Sample Item 1", 123])

 ws.append([2, "Sample Item 2", 456])

 ws.append([3, "Sample Item 3", 789])

 print("Content added to the workbook.")

 except Exception as e:

 print(f"Error adding content to workbook: {e}")

 raise

CHAPTER 8 Automating the Office 165

Create the folder path if it doesn't exist.

def ensure_path_exists(folder_path: str) -> Path:

 try:

 path = Path(folder_path).resolve()

 path.mkdir(parents=True, exist_ok=True)

 return path

 except OSError as e:

 print(f"Error creating directory {folder_path}: {e}")

 raise

Ensure the filename has a .xlsx extension.

def validate_file_name(file_name: str) -> str:

 if not file_name.lower().endswith('.xlsx'):

 file_name += '.xlsx'
 return file_name

Open an existing .xlsx file or create a new one.

def open_or_create_workbook(folder_path: Path, file_name: str):

 file_path = folder_path / file_name

 try:

 if file_path.exists():

 print(f"Opening existing workbook: {file_path}")

 return load_workbook(file_path)

 else:

 print(f"Creating new workbook: {file_path}")

 wb = Workbook()

 wb.save(file_path) # Initialize the file.

 return wb

 except Exception as e:

 print(f"Error opening or creating workbook {file_path}: {e}")

 raise

Save the workbook to the specified path.

def save_workbook(wb, file_path: Path) -> None:

 try:

 wb.save(file_path)

 print(f"Workbook saved successfully: {file_path}")

 except Exception as e:

 print(f"Error saving workbook {file_path}: {e}")

 raise

166 PART 2 Automating Common Computer Tasks

Open the file in the default application on Windows or macOS.

def open_file(file_path: Path) -> None:

 try:

 if sys.platform.startswith('win'):

 os.startfile(str(file_path))

 elif sys.platform.startswith('darwin'):

 os.system(f'open "{file_path}"')

 else:

 print("Unsupported OS for auto opening the file. Please open

manually:", file_path)

 except Exception as e:

 print(f"Error opening the file {file_path}: {e}")

 raise

Uses all the preceding functions to create or open an Excel workbook and

add content.

def process_workbook(folder_path: str, file_name: str) -> None:

 try:

 path = ensure_path_exists(folder_path)

 file_name = validate_file_name(file_name)

 file_path = path / file_name

 wb = open_or_create_workbook(path, file_name)

 add_content(wb)

 save_workbook(wb, file_path)

 open_file(file_path)

 except Exception as e:

 print(f"Failed to process workbook: {e}")

 raise

Specify your path and file name here.

def main():

 # Windows path example

 # folder_path = r"C:\Users\Alan\Documents\Practice\Excel Files"

 # macOS path example

 folder_path = "/Users/alan/Practice/Excel Files"

 file_name = "Sample Generated.xlsx"

 process_workbook(folder_path, file_name)

if __name__ == "__main__":

 main()

The key functions in this script are main() and add_content(), which I describe
in the next two sections.

CHAPTER 8 Automating the Office 167

Specifying your workbook
The main() function lets you use the script to create a new workbook or open an
existing workbook. Use the folder_path variable to define the location of the
workbook. If you specify a folder that doesn’t exist, the script will create a
folder for you.

As always, make sure you use proper syntax for your path depending on whether
you’re using Windows or macOS.

Specify your path and filename here.

def main():

 # Windows path example

 folder_path = r"C:\Users\Alan\Documents\Practice\Excel Files"

 # Mac path example

 # folder_path = "/Users/alan/Practice/Excel Files"

Use the file_name variable to indicate the filename of the workbook. If the file
doesn’t exist, the script will create and open a workbook with that filename. If the
file already exists, the script will open it. Either way, the script will add whatever
content you specify into that open workbook.

file_name = "Sample Generated.xlsx"

Defining content for your workbook
Use the add_content() function to specify what you want to put into the work-
book. In the example script, I added some generic sample content to keep things
relatively simple:

Here is where you define what you want to put into the workbook.

def add_content(wb) -> None:

 try:

 ws = wb.active

 ws.title = "Sample Data"

 # Add header row

 ws.append(["ID", "Name", "Value"])

 # Add sample rows

 ws.append([1, "Sample Item 1", 123])

 ws.append([2, "Sample Item 2", 456])

 ws.append([3, "Sample Item 3", 789])

 print("Content added to the workbook.")

168 PART 2 Automating Common Computer Tasks

 except Exception as e:

 print(f"Error adding content to workbook: {e}")

 raise

The wb parameter refers to the current open workbook, which is passed in by
other functions after the workbook is opened. The line that reads ws=wb.active
defines that open workbook as the active workbook, and subsequent lines use ws
to add content to that active workbook.

The openpyxl module allows you to do just about anything in a workbook that you
can do manually, including the following:

	» Insert and delete rows and columns.

	» Iterate over rows and columns.

	» Append rows.

	» Insert formulas using ranges and read formula results.

	» Apply conditional formatting.

	» Insert charts and images.

	» Format cells using fonts, alignment, colors, borders, number for-
mats, and more.

	» Adjust row heights and column widths.

For the full range of openpyxl capabilities, check out the documentation at
https://openpyxl.readthedocs.io.

If you’re an advanced Python user, you may be glad to know that openpyxl can
allow export data to and import data from Pandas DataFrames.

Creating and Opening PDFs
Portable Document Format (PDF) is a popular format for sharing documents
online, largely because the document always looks the same, whether you view it
on a PC or Mac. PDF readers, like Adobe Acrobat Reader, are free and plentiful.
These days, most web browsers can open and display PDFs.

In this section, I show you how to create new PDFs, open existing PDFs, and add
content to any PDF. We’ll use the PyPDF2 and reportlab modules. Neither of these
modules is part of the Python standard library, so after creating and activating

https://openpyxl.readthedocs.io/

CHAPTER 8 Automating the Office 169

your virtual environment, enter the following command in the Terminal to
install them:

pip install reportlab PyPDF2

This script uses PyPDF2 mainly for file-level tasks like opening and reading exist-
ing PDFs. It uses reportlab to add content to a page, because reportlab is gener-
ally preferred for that part of the job.

As with other scripts in this book, I show you the complete script first. Then I
show you how to adapt it to your own needs. Here’s the script:

create_open_pdf.py

pip install reportlab PyPDF2

import os

import sys

from pathlib import Path

from io import BytesIO

from reportlab.lib.pagesizes import letter

from reportlab.pdfgen import canvas

from reportlab.lib.units import inch

from PyPDF2 import PdfReader, PdfWriter

This is where you define the content to put into the PDF.

def add_content(c: canvas.Canvas) -> None:

 # Define the content to be added to the PDF.

 c.setFont("Helvetica", 16)

 c.drawString(1 * inch, 10 * inch, "Sample PDF Report")

 c.setFont("Helvetica", 12)

 c.drawString(1 * inch, 9.5 * inch, "Generated with Python, ReportLab

and PyPDF2")

 c.line(1 * inch, 9.3 * inch, 7.5 * inch, 9.3 * inch)

 # Add the additional paragraph.

 textobject = c.beginText()

 textobject.setTextOrigin(1 * inch, 8.7 * inch)

 textobject.setFont("Helvetica", 10)

 textobject.textLine("Use the canvas in reportlab to add content to

the PDF page.")

 textobject.textLine("See the reportlab documentation at https://docs.

reportlab.com for more.")

 c.drawText(textobject)

https://docs.reportlab.com
https://docs.reportlab.com

170 PART 2 Automating Common Computer Tasks

def ensure_path_exists(folder_path: str) -> Path:

 # Create the folder path if it doesn't exist.

 try:

 path = Path(folder_path).resolve()

 path.mkdir(parents=True, exist_ok=True)

 return path

 except Exception as e:

 print(f"Error creating directory: {e}")

 raise

def validate_file_name(file_name: str) -> str:

 # Ensure the filename has a .pdf extension.

 if not file_name.lower().endswith('.pdf'):

 file_name += '.pdf'
 return file_name

def create_new_page_pdf() -> BytesIO:

 # Create a new PDF with content using ReportLab.

 buffer = BytesIO()

 c = canvas.Canvas(buffer, pagesize=letter)

 add_content(c)

 c.showPage()

 c.save()

 buffer.seek(0)

 return buffer

def open_file(file_path: Path) -> None:

 # Open the PDf in the default application.

 try:

 if sys.platform.startswith('win'):

 os.startfile(str(file_path))

 elif sys.platform.startswith('darwin'):

 os.system(f'open "{file_path}"')

 else:

 print(f"Unsupported OS for automatic opening: {file_path}")

 except Exception as e:

 print(f"Error opening file {file_path}: {e}")

def process_pdf(folder_path: str, file_name: str) -> None:

 # If the PDF doesn't exist, create it.

 # Otherwise, open it and append a new page.

CHAPTER 8 Automating the Office 171

 try:

 path = ensure_path_exists(folder_path)

 file_name = validate_file_name(file_name)

 pdf_path = path / file_name

 writer = PdfWriter()

 # If the PDF exists, load its pages.

 if pdf_path.exists():

 print(f"\nOpening existing PDF: {pdf_path}")

 reader = PdfReader(str(pdf_path))

 for page in reader.pages:

 writer.add_page(page)

 else:

 print(f"\nCreating new PDF: {pdf_path}")

 # Create a new content page and add it.

 new_page_buffer = create_new_page_pdf()

 new_reader = PdfReader(new_page_buffer)

 writer.add_page(new_reader.pages[0])

 print("Added new content page.")

 # Write the updated PDF content to the file.

 with open(pdf_path, "wb") as f:

 writer.write(f)

 print(f"PDF processed and saved successfully: {pdf_path}\n")

 # Open the file using the default application.

 open_file(pdf_path)

 except Exception as e:

 print(f"Failed to process PDF: {e}")

 raise

def main():

 # Where to put (or open) the PDF file.

 # Windows example:

 folder_path = r"C:\Users\Alan\Documents\Practice\PDFs"

 # macOS/Linux example:

 # folder_path = "/Users/alan/Documents/Practice/PDFs"

 # Filename of PDF

 file_name = "Sample Generated.pdf"

172 PART 2 Automating Common Computer Tasks

 # Create or open the PDF and add content.

 process_pdf(folder_path, file_name)

if __name__ == "__main__":

 main()

All the code for creating a new PDF or opening an existing PDF is already con-
tained in the script. The script contains exception handling to catch possible
errors and display error messages for unforeseen exceptions. You don’t need to do
anything in the script for all of that to work. But it’s up to you to determine what
you want to put into the PDF, as I explain next.

Defining content for your PDF
The code for defining what you want to put into your PDF is contained within
the add_content() function in the script. Unfortunately, you can’t just type what
you want there. You must use the syntax specified by reportlab. The script shows
examples of using textobject and the .setFont, .drawString, and .line
methods of reportlab. See the reportlab documentation at https://docs.
reportlab.com for more information.

Identifying your PDF
In the main() function, specify the path and filename for your PDF. As with other
automation scripts in this book, if you specify a PDF that already exists, the script
will open that PDF and your content to that file. If you want to create a new PDF
from scratch, make up a new file with a .pdf extension.

As always, make sure to use a valid path for Windows or macOS/Linux. In the fol-
lowing example, I use Windows, and I comment out the macOS/Linux path. I’ve
included that path only as a reminder of the proper syntax for those paths.

def main():

 # Where to put (or open) the PDF

 # Windows example:

 folder_path = r"C:\Users\Alan\Documents\Practice\PDFs"

 # macOS/Linux example:

 # folder_path = "/Users/alan/Documents/Practice/PDFs"

 # Filename of PDF

 file_name = "Sample Generated.pdf"

https://docs.reportlab.com/
https://docs.reportlab.com/

CHAPTER 8 Automating the Office 173

The file_name variable must be the name of the PDF you want to create or mod-
ify. If you specify a path and filename to an existing PDF, the script appends a new
page to that PDF and inserts the content on that page.

Watermarking PDFs
Watermarking PDFs is a common procedure, sometimes done to protect intellec-
tual property, establish ownership, and prevent misuse by deterring unauthorized
copying, distribution, or alteration, particularly of sensitive or confidential
materials.

Watermarks also serve branding purposes by embedding logos or names, rein-
force document status with labels like Draft or Confidential, and enable tracking of
distribution through unique identifiers to trace leaks or unauthorized sharing,
providing a visible layer of security and control while maintaining the docu-
ment’s content.

In this section, you create a script that can open any existing PDF and add a water-
mark to each page of the document. The script saves the watermarked file with the
original filename with _watermarked appended to the filename, so you retain your
original document.

The script uses reportlab and PyPDF2 to manage the PDF, and Pillow to get the
dimensions of your image. After you create and activate your virtual environment,
make sure to enter this command at the Terminal to install those modules (if
they’re not already installed):

pip install reportlab PyPDF2 Pillow

First, let me show you the entire script. I explain how to adapt it to your own
needs in the sections that follow.

watermark_pdf.py

pip install reportlab PyPDF2 Pillow

import os

import sys

from pathlib import Path

from io import BytesIO

from PIL import Image

from reportlab.pdfgen import canvas

from PyPDF2 import PdfReader, PdfWriter

174 PART 2 Automating Common Computer Tasks

def create_watermark_pdf(page_width, page_height, watermark_path, magnification):

 # Center the watermark vertically and horizontally.

 try:

 # Open the watermark image to get its dimensions.

 with Image.open(watermark_path) as img:

 img_width, img_height = img.size

 # Scale the image dimensions by the magnification percentage.

 scaled_width = img_width * magnification / 100

 scaled_height = img_height * magnification / 100

 # Compute the centered position using scaled dimensions.

 x = (page_width - scaled_width) / 2

 y = (page_height - scaled_height) / 2

 buffer = BytesIO()

 c = canvas.Canvas(buffer, pagesize=(page_width, page_height))

 # Draw the image with scaled dimensions.

 c.dr�awImage(str(watermark_path), x, y, width=scaled_width,

height=scaled_height, mask='auto')

 c.showPage()

 c.save()

 buffer.seek(0)

 return buffer

 except Exception as e:

 print(f"Error creating watermark PDF: {e}")

 raise

def add_watermark_to_pdf(pdf_path: Path, watermark_path: Path, magnification:

int) -> None:

 # Opens the given PDF file and adds a watermark to every page

 try:

 reader = PdfReader(str(pdf_path))

 writer = PdfWriter()

 for page in reader.pages:

 # Get page dimensions from the media box.

 page_width = float(page.mediabox.width)

 page_height = float(page.mediabox.height)

 # Create the watermark page for the current page dimensions using

the provided magnification.

 watermark_buffer = create_watermark_pdf(page_width, page_height,

watermark_path, magnification)

 watermark_reader = PdfReader(watermark_buffer)

CHAPTER 8 Automating the Office 175

 watermark_page = watermark_reader.pages[0]

 # Merge the watermark page with the current page.

 page.merge_page(watermark_page)

 writer.add_page(page)

 # Save the watermarked PDF to a new file, keeping the original intact.

 output_pdf = pdf_path.with_name(f"{pdf_path.stem}_watermarked.pdf")

 with open(output_pdf, "wb") as f_out:

 writer.write(f_out)

 print(f"Watermarked PDF saved as: {output_pdf}")

 except Exception as e:

 print(f"Error processing PDF file: {e}")

 raise

def main():

 try:

 # Path to your existing PDF to which you'll add watermarks

 pdf_file_path = R"C:\Users\Alan\Documents\Practice\PDFs\practice.pdf"

 #pdf_file_path = "/Users/alan/Practice/PDFs/practice.pdf"

 # Path to your watermark image file

 watermark_image_path = R"C:\Users\Alan\Documents\Practice\PDFs\

watermark.png"

 #watermark_image_path = "/Users/alan/Practice/PDFs/watermark.png"

 # Set magnification value (for example, 80 for 80 percent).

 magnification = 100

 # Resolve the paths to pathlib Paths.

 pdf_path = Path(pdf_file_path).resolve()

 watermark_path = Path(watermark_image_path).resolve()

 # Validate the existence of files.

 if not pdf_path.exists() or not pdf_path.is_file():

 raise FileNotFoundError(f"PDF file not found: {pdf_path}")

 if not watermark_path.exists() or not watermark_path.is_file():

 raise FileNotFoundError(f"Watermark image not found:

{watermark_path}")

 add_watermark_to_pdf(pdf_path, watermark_path, magnification)

 except Exception as e:

 print(f"An error occurred: {e}")

if __name__ == "__main__":

 main()

176 PART 2 Automating Common Computer Tasks

Creating your watermark image
To prevent your watermark image from obscuring content in your document, use
very light colors in the image. Ideally, ensure the image has a transparent back-
ground. You can remove the background from an image using Preview on macOS
computers or Photos on Windows. Optionally, use any free AI tool that allows you
to remove image backgrounds.

If the watermark is obscuring text, you may also want to reduce the opacity of the
image foreground. If you don’t have a graphics editor with that capability, you can
use the free Photopea editor at www.photopea.com. These are the steps:

1.	 Open your image in Photopea.

2.	 Click the image layer in Photopea.

If you just opened the image, the image layer is labeled Background in
the layers list.

3.	 Set the Opacity to 30%, as shown in Figure 8-1.

4.	 To save the image, choose File ➪   Export As ➪   PNG.

You may want to experiment with a few different opacities to determine what
works best for you. Consider saving different opacities with different filenames,
such as Watermark 20pct.png for an image with 20 percent opacity, so you can
try out different images and see what works best for your document.

FIGURE 8-1:
Reducing an

image’s opacity
in Photopea.

https://www.photopea.com/

CHAPTER 8 Automating the Office 177

Adapting the script to your needs
To adapt this script to your own needs, set paths to your PDF and watermark
image in the main() function. As always, remember to use the correct syntax for
your operating system. Here are examples using Windows paths.

Path to your existing PDF to which you'll add watermarks

pdf_file_path = R"C:\Users\Alan\Documents\Practice\PDFs\practice.pdf"

Path to your watermark image file

watermark_image_path = R"C:\Users\Alan\Documents\Practice\PDFs\watermark.png"

Set magnification value (for example, 80 for 80 percent)

magnification = 100

If the watermark image is too large or too small, when placed in the PDF, use
the magnification variable to adjust the size. For example, setting the
magnification variable to 50 will shrink the image to 50 percent its size.
Setting magnification to 200 doubles the size of the watermark image.

3Automating
the Internet

IN THIS PART . . .

Master application programming interfaces (APIs) and
JavaScript Object Notation (JSON) for online
interaction.

Automate web browsers.

Scrape web pages for code and content.

Automate email and Short Message Service (SMS)
text messages.

Automate social media contents and metrics.

CHAPTER 9 Interacting with APIs 181

Chapter 9
Interacting with APIs

Much of the interaction between your Python scripts and internet content
will take place through an application programming interface (API). To
gain access to an API, you typically have to sign up with the API provider

and obtain an API key, which is a unique code provided by an API provider to iden­
tify you and your app. Keys are strings of characters and numbers, 20 to 50 char­
acters in length.

In this chapter, I show you how to obtain API keys, store them safely, and use
them with Python to take advantage of internet API services. I also show you how
to use JSON to format data when interacting with APIs.

Obtaining API Keys
To obtain an API key, you typically need to sign up with the API provider and
request access. The steps are usually something like this:

1.	 Go to the website of the API provider, and create a user account or sign
into your existing account.

2.	 Navigate to the API section of the provider’s website.

It’s often under a heading like Developer Portal or API Dashboard.

IN THIS CHAPTER

	» Getting and storing API keys

	» Working with JSON data

	» Making sense of REST APIs

	» Checking out a REST API script

182 PART 3 Automating the Internet

3.	 Follow the onscreen instructions to generate an API key.

You may need to create a project or application on the site.

4.	 Agree to the API’s Terms of Service.

After it’s generated, your unique API key will be displayed on the screen.

5.	 Copy the API key and store it a secure place on your own computer.

It may take a couple of hours or more for a new API key to be activated for use.
Check the documentation on the site where you got the key. Watch for any email
messages about how long to wait before testing the key.

Don’t share your API key with others or expose the key to the public. Doing so
could allow others to access the API under your identity to abuse or misuse the
service. If you’re paying for an API service, others using the service on your dime
could end up costing you a lot of money. (See the next section for tips on safely
storing your API keys.)

Not all API keys are free. In this chapter, I focus on APIs that were free at the time
of this writing, because I know people don’t always want to set up a paid account
when they’re just trying to learn. But things change, so I apologize in advance if I
unwittingly send you someplace that asks for payment.

Safely Storing API Keys
It’s important to keep your API keys private, because they identify your account.
You don’t want imposters misusing an API under your identity. If you ever do start
using paid services, you don’t want to be paying for other people to use your
account either.

Using a .env file is a common way to use API keys without putting the key in your
Python code. A .env file is just a simple text file with the name .env and no
extension. In that file, you can give the key a variable name of your own choosing.
That way, you can show only the variable name, not the actual key, in your code.
So, if you share your code with others, your key is still hidden.

As you may know, a variable whose value never changes is referred to as a constant
in Python and other programming languages. Because your API key won’t change
as your script is running, it’s actually a constant in your code. Though not required,
it’s customary to show constant names in all uppercase letters (to distinguish

CHAPTER 9 Interacting with APIs 183

constants from variables). So, if you decide on a name like Weather_API_Key for
your variable name, you could actually type the name in all uppercase letters,
like this:

WEATHER_API_KEY=8c21435c4317367221435aac09bf4c1d

You can put as many API keys as you like into a .env file. Just make sure each has
a unique name. Here are the steps for adding an API key to a Python project in
Visual Studio Code (VS Code):

1.	 Open your Python project folder in VS Code.

2.	 Create and activate a virtual environment if you haven’t already done so.

See Chapter 2 for complete instructions.

3.	 Touch the mouse pointer to the project folder name at the top of the
Explorer pane and click New File, or choose File ➪   New File from
the menu bar.

4.	 Name the file .env.

Don’t use any spaces or a filename extension — just type the name as shown.

5.	 With the file open in the editor, type a name for the key (usually in all
uppercase letters) followed by an equal sign (=) and the API key.

Figure 9-1 shows an example.

6.	 Close and save the .env file.

The API key must be a valid key that you got from the provider. The one shown in
Figure 9-1 is just an example and won’t work in real life. Make sure you use your
own API key.

FIGURE 9-1:
A .env file
with an API

name and key.

184 PART 3 Automating the Internet

Creating a .gitignore file
If there is any chance you’ll upload the project to GitHub, be sure to include a
.gitignore file with .env included in it to prevent your key from being shared with
your Python code. You can also include the .venv filename in that .gitignore file, so
users can create their own virtual environment for their own system after they
download your code.

I cover virtual environments and the .venv file in Chapter 2.

Adding a .gitignore file to a VS Code project is the same as adding any other file.
Just create a new file, as you did with .env, but name this one .gitignore with no
spaces and no filename extension. When the file is open in the editor, just type in
.env and .venv, each on its own line, as shown in Figure 9-2.

OTHER WAYS TO SECURE API KEYS
Instead of storing API keys in a .env file, you can store keys with the operating system’s
environment variables, or use a cloud-based service like Amazon Web Services (AWS)
Secrets Manager (https://aws.amazon.com/secrets-manager), Microsoft Azure
Key Vault (https://azure.microsoft.com/en-us/products/key-vault), or
Google Cloud Secret Manager (https://cloud.google.com/security/products/
secret-manager). I won’t go into detail on those options, because this is a book about
Python automation, not API key management, but feel free to explore them on your
own by searching the web or asking an artificial intelligence (AI) about them.

FIGURE 9-2:
A .gitignore
file protecting
.env and the
.venv folder.

https://aws.amazon.com/secrets-manager
https://azure.microsoft.com/en-us/products/key-vault
https://cloud.google.com/security/products/secret-manager
https://cloud.google.com/security/products/secret-manager

CHAPTER 9 Interacting with APIs 185

Adding a .gitignore file to your project won’t affect how your Python code works.
The .gitgnore file just prevents any files or folders listed in its contents from
being pushed to a GitHub repository if you decide to share your Python code with
the world using GitHub.

Using an API key in your script
To use the API from the .env file in your code, you need to pip install
hon-dotenv into your virtual environment. Then include all the following lines
near the top of your Python script:

from dotenv import load_dotenv

import os

Load the .env file

load_dotenv()

Get the API key

api_key = os.getenv("SAMPLE_API_KEY")

The variable to the left of = os.getenv can be any valid Python variable name
you like, but make sure the name inside the parentheses and quotation marks
after os.getenv exactly matches the name you gave to the API key inside the
.env file.

Throughout the rest of your code, use the variable name at the left side of that line
(api_key in the example) anywhere you need to provide your API key. You’ll see
an example in the “Making API requests” section in this chapter.

Handling JSON Data
JavaScript Object Notation (JSON) is a data format used for storing and exchanging
data. The JavaScript part of the name is just because its syntax resembles Java­
Script, which uses lots of curly braces ({}). JSON is widely supported across pro­
gramming languages and platforms, and it’s commonly used in APIs, as well as
for configuration files and data storage.

186 PART 3 Automating the Internet

Like a Python data dictionary, JSON consists of key–value pairs where each item
of data has a name and a value. The value can be a string, a number, a Boolean, an
array (list), an object, or null. Each key–value pair is enclosed in curly braces.

{

 "username": "Alice",

 "age": 25,

 "is_student": true,

 "hobbies": ["reading", "hiking"],

 "address": {

 "street": "123 Main St",

 "city": "Boston"

 }

}

Each name in this example ("username", "age", "is_student", "hobbies", and
"address") is a key. Each key has a value to the right of the colon. Here’s some
information about each key in that example:

	» The "username" key contains a string.

	» The "age" key contains a number.

	» The "hobbies" key contains an array (list).

	» The "address" key contains an object.

Because the entire block of JSON data is sometimes referred to as a JSON
object, the "address" key may also be referred to as a nested object (because it’s
contained with the larger JSON object). The address is unique in that it’s a
dictionary object in its own right, containing two keys of its own, one named
"street" and the other named "city". Each of the other keys only contains
one value (like age, which contains the value 18).

Python doesn’t have a JSON data type, so JSON data in Python code is often stored
as a string. When defining such strings, it’s important to use single-quotes (') to
enclose the entire string, because each key name inside that string must be
enclosed in double quotation marks for JSON. A JSON string containing just two
key–value pairs in Python looks like this:

json_string = '{"username": "Alice", "age": 25}'

CHAPTER 9 Interacting with APIs 187

Parsing and serializing JSON data
In Python, the dictionary (dict) data type is better suited to dealing with name–
value pairs than the string (str) data type. So Python includes a built-in json
module, which simplifies converting between dictionaries and JSON strings. The
json module is built in, so you just need to include import json near the top of
your code to use the module. No need to pip install the module.

The json module contains methods to parse and serialize JSON data. Let’s start by
defining those two buzzwords:

	» Parsing JSON: Parsing refers to the process of converting a JSON string into a
Python object, such as a dict, list, str, int, float, bool, or None.

	» Serializing JSON: Serializing is the process of converting a Python object
(for example, a dict, list, str, int, float, bool, or None) into a JSON-
formatted string or writing it to a file as JSON data.

Four methods are contained within the json module for parsing and serializing
JSON data:

Method What It Does

json.loads() Parses a JSON-formatted string into a Python object (for example,
dict or list)

json.dumps() Converts a Python object into a JSON-formatted string

json.load() Reads JSON data from a file into a Python object

json.dump() Writes a Python object to a file as JSON

The first two methods, .loads and .dumps, allow you to work with JSON strings.
Here’s an example of using json.loads() to parse a JSON string into a
Python object:

import json

Create a JSON string.

json_string = '{"username": "Alice", "age": 25}'

print(json_string)

print(type(json_string))

Parse JSON string to Python object

python_obj = json.loads(json_string)

print(python_obj) # Output: {'name': 'Alice', 'age': 25}

print(type(python_obj)) # Output: <class 'dict'>

188 PART 3 Automating the Internet

Running that code produces the following output in the Terminal:

{"username": "Alice", "age": 25}

<class 'str'>

{'username': 'Alice', 'age': 25}

<class 'dict'>

The output tells you that the first item is a string (<class 'str'>) in Python. The
second item is a Python dictionary (<class 'dict'>) because the .loads method
converted the original string to a Python dictionary.

This next code does the opposite — it serializes a Python dictionary object into a
Python string:

import json

Create a Python dictionary object

python_obj = {"username": "Alice", "age": 25}

print(python_obj)

print(type(python_obj))

Serialize the Python dictionary to a JSON string

json_string = json.dumps(python_obj)

print(json_string)

print(type(json_string))

Reading and writing JSON files
Python makes quick work of saving dictionary data to data files via the .dump
method of the json module. In your Python code, you can start with a dict object,
which is the preferred object type for storing name–value pairs. The syntax for
using .dump is as follows:

with open("filename", "w") as file:

 json.dump(dictionary, file)

Replace filename with the name of the file in which you want to store the JSON
object. Use a .json filename extension to best identify the file type. If you don’t
specify a path, the file will be created in the same folder as the code in which
you’re running Python. Here’s an example of a complete script:

CHAPTER 9 Interacting with APIs 189

import json

Create a Python dictionary object

python_dictionary = {

 "username": "Alice",

 "age": 25,

 "is_student": True,

 "hobbies": ["reading", "hiking"],

 "address": {

 "street": "123 Main St",

 "city": "Boston"

 }

}

Serialize to a JSON file

with open("data.json", "w") as file:

 json.dump(python_dictionary, file))

The script starts by creating a Python dictionary that contains several key–value
pairs and data types. Then it stores that dictionary data serialized into JSON for­
mat in a file named data.json. That file contains the same data as a JSON object,
as shown in Figure 9-3.

Next, let’s look at a script that does the opposite of the preceding script in that it
reads the data.json file and imports its data into a Python dictionary. To make it
realistic, I’ve included some exception handling for bad or missing files. I’ve also
included some code to display each item from the dictionary on a separate line in
the Terminal:

import json

Step 1: Open and read the JSON file

try:

 with open("data.json", "r") as file:

 # Step 2: Parse JSON file into a Python dictionary using json.load()

 user_data = json.load(file)

FIGURE 9-3:
A Python

dictionary
serialized into a
data.json file.

190 PART 3 Automating the Internet

 # Step 3: Print the data type and contents to verify

 print("Type of data:", type(user_data))

 print("Username:", user_data["username"])

 print("Age:", user_data["age"])

 print("Is Student:", user_data["is_student"])

 print("Hobbies:", user_data["hobbies"])

 print("City:", user_data["address"]["city"])

except FileNotFoundError:

 print("Error: The file 'data.json' was not found.")

except json.JSONDecodeError as e:

 print("Error: Invalid JSON format in 'data.json' -", e)

except KeyError as e:

 print("Error: Missing key in dictionary -", e)

Assuming the data.json file exists and is the one shown in Figure 9-3, the output
from that code is as follows:

Type of data: <class 'dict'>

Username: Alice

Age: 25

Is Student: True

Hobbies: ['reading', 'hiking']

City: Boston

The <class 'dict'> in the output tells you that the data read from the file is in a
Python dictionary. Subsequent print statements display individual items of data
from the dictionary.

Understanding REST APIs
Most modern APIs today are Representational State Transfer (REST) APIs, all of
which follow the same standards and rules for accessing information via the
internet. REST APIs use the Hypertext Transfer Protocol (HTTP), the same as all
websites, to allow a client (your Python script or any other app) to access another
app on a server on the internet, which can provide useful information.

REST is a stateless API, meaning there is no open connection between the client
and the server during a transaction. Your app sends a request to an endpoint —
typically, a web Uniform Resource Locator (URL) that starts with https://. The
server sends back a response containing the information you requested. That
response is typically data in JSON format, discussed in the previous section.

CHAPTER 9 Interacting with APIs 191

Amazon, Google, Meta, Microsoft, PayPal, Salesforce, Shopify, Stripe, Twilio, and
X (formerly Twitter) are just a few of the major tech companies offering REST
APIs to developers. Many of those companies offer REST APIs specifically for
AI. Major players in the AI world offering REST APIs include Anthropic, DeepSeek,
Hugging Face, OpenAI, Stability AI, xAI, and others.

Not all REST APIs are free. However, many offer a free tier so you can learn and
test your code for free.

Any script that interacts with a REST API is likely to use the requests library. That’s
not part of the standard library. When you’re writing Python code to interact with
a REST API, make sure to create and activate a virtual environment. Enter a pip
install requests command in the Terminal. Include an import requests com­
mand in your code.

Making API requests
A REST API request happens when your Python code requests information from a
REST API on the internet. Each request gets a response that includes a status code
to indicate whether the request succeeded or failed.

You can make five main types of requests:

Type
of Request What It Does

GET Retrieves data from a server. GET is used to fetch information only. This is the most common
type of request when you’re interacting with AI. It returns status code 200 (OK) on success.

POST Sends data to the server to create a new resource. POST is typically used with databases to
insert a new record into a database table. It returns status code 201 (Created) on success.

PUT Updates an existing resource with new data. PUT is typically used to change a record in a
database table. It returns 200 (OK) or 204 (No Content) on success.

DELETE Removes a resource from the server. DELETE is typically used to delete a record from a
database. It returns 204 (No Content) on success.

PATCH Partially updates a resource, such as a single field in a database record. It returns 200 (OK) or
204 (No Content) on success.

Don’t worry if you’re not already familiar with database terminology like tables
and records. That knowledge isn’t required for Python or Python automation.

192 PART 3 Automating the Internet

There is no hard-and-fast rule that applies to every REST API request, but most
include at least some of the following components:

	» URL/endpoint: The URL to which the request is sent (for example, https://
api.example.com/data).

	» Headers (optional): A dict of metadata sent with the request, which may
include things like authentication tokens or API keys.

	» Query parameters (optional): Key–value pairs appended to the URL or
passed as a dictionary (for example, params={"key": "value"}).

	» Response handling: Code that processes the server’s response (for example,
.json() to parse JSON or response.status_code to check for success).

The documentation for the REST API will tell you the URL/endpoint to which
you’ll send your request. For example, to get the current weather for any location,
use the URL https://api.openweathermap.org/data/2.5/weather.

You must include your API key in a parameter named appid. You can send
numerous optional parameters. For example, if you want to get the weather for a
city in the United States, and you want the temperature expressed in degrees
Fahrenheit, use the q parameter to specify the city and state and use the units
parameter with the value "imperial" for Fahrenheit.

Specify the URL to which you’ll send the request (as specified in the OpenWeath­
erMap API documentation). In this example, let’s assume you have the key in the
.env file, as shown in the “Making API requests section, earlier in this chapter,
assigned to the name WEATHER_API_KEY as follows:

WEATHER_API_KEY=8c21435c4317367221435aac09bf4c1d

The API key shown in the example isn’t a valid one — it’s just an example. Make
sure to get your own API key from https://openweathermap.org and use that key
to try out the code.

Here is a more complete example that includes the import os and load_dotenv
code needed to access the .env file, followed by a complete REST API request for
OpenWeatherMap, with lots of comments to explain what’s going on:

from dotenv import load_dotenv

import os

Load the .env file

load_dotenv()

https://api.example.com/data
https://api.example.com/data
https://api.openweathermap.org/data/2.5/weather
https://openweathermap.org/

CHAPTER 9 Interacting with APIs 193

Retrieve the API key from the environment variable

API_KEY = os.getenv("WEATHER_API_KEY")

OpenWeatherMap API endpoint for current weather data

url = "https://api.openweathermap.org/data/2.5/weather"

Put parameters in a dictionary.

params = {

 "appid": API_KEY,

 "q": "San Diego, CA USA",

 "units": "imperial" # Change to "metric" if Celsius is preferred

}

Send a GET request to the API endpoint with the defined parameters

response = requests.get(url, params=params)

That last line sends the actual API request. The response from the API will be
placed in the variable named response.

Parsing API responses
After you send an API request, the server sends a response, usually within a few
seconds, depending on what you’ve requested. In the code in the preceding sec­
tion, that response is stored in a variable named response. Let’s assume I follow
that line of code with two print statements — one to print the data type of the
response and the other to print the actual response, like this:

response = requests.get(url, params=params)

print(type(response))

print(response)

Running the script, and assuming you get a valid response, displays the following
in the Terminal:

<class 'requests.models.Response'>

<Response [200]>

The data type, requests.models.Response, indicates that the response is a
Response object from the requests library. The 200 is the status code, indicating
that the transaction was successful. Perhaps you’re now wondering where the
actual data, the weather in the requested city, is located.

194 PART 3 Automating the Internet

A more realistic way to handle the data would be to use an if statement to verify
that the transaction was successful first. If it was, use response.json(), a method
of the requests library, to convert the response to a Python dictionary. Then print
the data type and contents of the response, as follows:

response = requests.get(url, params=params)

Check if the request was successful

if response.status_code == 200:

 # Parse the response JSON into a Python dictionary

 data = response.json()

 print(type(data))

 print(data)

In the Terminal, the output looks like this:

<class 'dict'>

{'coord': {'lon': -117.1573, 'lat': 32.7153}, 'weather': [{'id': 804, 'main':

'Clouds', 'description': 'overcast clouds', 'icon': '04n'}], 'base':

'stations', 'main': {'temp': 59.02, 'feels_like': 58.28, 'temp_min': 57.29,

'temp_max': 60.6, 'pressure': 1014, 'humidity': 78, 'sea_level': 1014, 'grnd_

level': 1010}, 'visibility': 10000, 'wind': {'speed': 5.75, 'deg': 320},

'clouds': {'all': 100}, 'dt': 1746187856, 'sys': {'type': 2, 'id': 2095167,

'country': 'US', 'sunrise': 1746190812, 'sunset': 1746239447}, 'timezone':

-25200, 'id': 5391811, 'name': 'San Diego', 'cod': 200}

The <class 'dict'> tells you that the data variable contains a Python dictionary.
The second line is all the data received from the OpenWeatherMap REST API,
which includes much more information than just the temperature. For example,
'lon' is the longitude, 'lat' is the latitude, and 'temp' is the current tempera­
ture. There’s also visibility, clouds, humidity, sunrise, sunset . . . all kinds of
information. You can refer to the OpenWeatherMap API documentation for any­
thing you don’t understand.

Realistically, you’re probably going to want to display the information in a more
user-friendly way. But I wanted to show you how you can “inspect” the true
nature of the response from the REST API, so that, in your own code, you can fig­
ure out how to retrieve information from a REST API, pick apart the response, and
then choose what you want to show and how to show it.

Reviewing a Complete REST API Script
Throughout this chapter, I mainly show you bits and pieces of code for interacting
with a REST API. In this section, I show you a complete working script with all the
pieces in place.

CHAPTER 9 Interacting with APIs 195

This is a complete script for querying the OpenWeatherMap REST API. It includes
code to load an API key from a .env file, handle exceptions, and display the weather
in a user-friendly format. I’ve included lots of comments to explain everything
that’s going on in the code.

openweathermap.py

pip install python-dotenv requests

import os

For making HTTP requests to a REST API.

import requests

For loading variables from the .env file

from dotenv import load_dotenv

Load environment variables from the .env file

load_dotenv()

Retrieve the API key from the environment variable

API_KEY = os.getenv("WEATHER_API_KEY")

If the API key doesn't exist, print an error message and exit

if not API_KEY:

 print("ERROR: WEATHER_API_KEY not found in .env file.")

 exit(1)

OpenWeatherMap API endpoint for current weather data

url = "https://api.openweathermap.org/data/2.5/weather"

Define the parameters to send with the request:

- q: the city to search for weather data

- appid: your API key for authentication

- units: "imperial" for Fahrenheit, "metric" for Celsius

params = {

 "q": "San Diego, CA USA",

 "appid": API_KEY,

 "units": "imperial"

}

Send a GET request to the API endpoint with the defined parameters

response = requests.get(url, params=params)

Check if the request was successful

if response.status_code == 200:

 # Parse the response JSON into a Python dictionary

 data = response.json()

 # Extract the city, temperature, and description.

196 PART 3 Automating the Internet

 city = data["name"]

 temperature = data["main"]["temp"]

 description = data["weather"][0]["description"]

 # Print the weather information

 print(f"\nWeather in {city}: {temperature}°F, {description}\n")

else:

 # If request failed, print the status code and the error message.

 print(f"Error {response.status_code}: {response.text}")

When you run that code successfully, the output is a simple line of text in the
Terminal that reads something like this:

Weather in San Diego: 59.05°F, overcast clouds

That’s an awful lot of bother to go through, just to get the weather in some city.
But the point is, there are thousands of REST APIs in the world, capable of return­
ing all kinds of data. What you’ve learned in this chapter should apply to virtually
every one of those APIs. So, you could use that last script as a general model for
any Python script you use to access a REST API.

You always have the option to ask any AI to write the script for you. For example,
tell AI to “Write a script that gets the S&P 500 index price from a free Alpha
Vantage REST API account,” so you get some code to work with. You’ll still need
to get your own API key. The code the AI generates for you won’t look exactly like
the example I provide. But you should be able to understand and modify that code,
as needed, based on everything I explain in this chapter.

You can also ask AI for help finding APIs for different domains. For example, ask
AI, “Where can I find free APIs for AI chatbots?” or “Where can I find free REST
APIs for AI image generation?”

CHAPTER 10 Automating the Web 197

Chapter 10
Automating the Web

This chapter is all about automating web browsers. You’ll learn techniques to
open a web page, find and fill text boxes, and submit the form data, exactly
as you would do yourself using a mouse and keyboard. In this chapter, you

make Python do all that for you.

Automating Web Browsers
If you’re looking for a way to automate opening a web page and filling one or more
text boxes with known information, selenium is your best bet. Two key modules
that you can import into your Python scripts are named selenium and webdriver-
manager. They aren’t part of the Python standard library, so when you plan to use
them in a script, make sure to create and activate your virtual environment. Then
enter the following command at the Terminal:

pip install selenium webdriver-manager

The selenium module provides the ability to automatically control the browser
and interact with controls on a web page. The webdriver-manager module allows
you to use different web browsers, such as Apple Safari, Google Chrome, and
Microsoft Edge, without manually downloading and installing drivers for each
browser yourself and adding them to your system PATH.

IN THIS CHAPTER

	» Looking at web browser animation

	» Finding controls on web forms

	» Filling text boxes and
submitting forms

	» Automatically filling forms from JSON
data files

198 PART 3 Automating the Internet

Loading drivers for your browser
One of the first steps to creating a script to interact with a web page is to import
the correct drivers for that browser. I’ll provide a few simple scripts that you can
try out yourself, to illustrate the syntax. But be aware that each script only opens
the browser, navigates to www.google.com, and then holds the browser window
open until you press Enter on VS Code’s Terminal window.

You can only use a web browser that’s installed on your computer. You can’t sim-
ulate an uninstalled browser using selenium.

Here’s a script that loads the correct drivers for Chrome, which you can try if you
have Chrome installed on your computer.

pip install selenium webdriver-manager

from selenium import webdriver

from selenium.webdriver.chrome.service import Service

from webdriver_manager.chrome import ChromeDriverManager

Set up the Chrome WebDriver.

driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()))

Open https://www.google.com in Chrome.

driver.get("https://www.google.com")

Keep the browser open until the user presses Enter.

input("Press Enter to close the browser...")

driver.quit()

Here’s the same script, but this one uses Edge as the browser:

pip install selenium webdriver-manager

from selenium import webdriver

from selenium.webdriver.edge.service import Service

from webdriver_manager.microsoft import EdgeChromiumDriverManager

Set up the Microsoft Edge WebDriver.

driver =webdriver.Edge(service=Service(EdgeChromiumDriverManager().install()))

Open https://www.google.com in Edge.

driver.get("https://www.google.com")

https://www.google.com/

CHAPTER 10 Automating the Web 199

Keep the browser open until the user presses Enter.

input("Press Enter to close the browser...")

driver.quit()

If you’re using Safari on a Mac, you’ll need to enable remote automation in Safari
Settings in order for any automation script to work. Here’s how:

1.	 Open Safari and choose Safari ➪   Settings.

The Settings dialog box appears.

2.	 Click the Advanced tab.

3.	 Select the Show Features for Web Developers check box at the bottom of
the dialog box.

The Settings dialog box should change to display a Developer tab. If it doesn’t,
close the Settings dialog box, close and reopen Safari, and choose
Develop ➪   Developer Settings.

4.	 Click the Developer tab.

If you had to close and reopen Safari and choose Develop ➪   Developer
Settings, you’re already there.

5.	 Select the Allow Remote Automation check box, as shown in Figure 10-1.

6.	 Close the dialog box.

7.	 Close Safari.

FIGURE 10-1:
Allowing remote

automation
in Safari.

200 PART 3 Automating the Internet

After you’ve enabled remote automation, you should be able to run the script to
open Safari, navigate to www.google.com, and keep the browser window open
until you press Enter in VS Code’s Terminal window to end the script.

Finding text boxes to fill
On web pages, controls like text boxes are defined in Hypertext Markup Language
(HTML) using tags like those shown in Table 10-1.

Most controls will have an id, which appears inside the tag as id= followed by the
identifier. For example, here’s a tag for a text box control with an id of "prompt":

<input type="text" id="prompt">

The Submit button for a form may or may not have an id. But its tab is always
<input type="submit">, so you can typically refer to it using syntax that identi-
fies a Submit button, as you’ll see a little later in this section.

The id of a control isn’t usually obvious just from looking at a web page. Typically,
you can right-click the control and choose Inspect. A panel opens the HTML tag
for the control highlighted, as shown in Figure 10-2. In this example, I right-
clicked the Search box on Wikipedia’s page. The highlighted tag includes
id="searchInput", which shows that the control’s id is "searchInput".

If you can’t find the id of a control using your current web browser, try visiting
the same page with Edge or Chrome to see if you get better results.

TABLE 10-1	 Common HTML Tags for Controls on Web Pages
HTML Tag Control Type

<input type="text"> Text box

<input type=”search> Text box used for searches

<textarea> Multiline text box

<select> Drop-down list

<input type="radio"> Radio button

<input type="checkbox"> Check box

<input type=”submit”> Submit button for a form

https://www.google.com/

CHAPTER 10 Automating the Web 201

That box also contains type="search", and there is no Submit button on the page.
There is a magnifying glass next to the text box. If you can type a word or phrase
into the Search box, press Enter, and the search is performed, that tells you
there is no need to click a Submit button. In your automation code, you can fill the
searchInput box and have the script press Enter — that’s sufficient.

On larger forms with multiple controls, where pressing Enter doesn’t submit
the form automatically, your Python script will need to click the Submit button.
I show you examples of both in the following sections.

Automating Filling Forms Online
So far, all we’ve done with code is get the browser open and onto a page. Next, we
need to talk about having Python put the cursor into a specific control on an open
page and typing text there. Doing so requires two additional imports from
selenium; a class named By that helps you find a control based on its id, name, or
other characteristic; and a class named Keys that can simulate pressing special
keys like Return (Keys.RETURN) and Tab (Keys.TAB) on the keyboard.

Following is a script to open the page at www.wikipedia.org, type the text Blue
whale in the Search box, and then press Enter, so you can see a more complete

FIGURE 10-2:
The Wikipedia

Search box
in DevTools.

https://www.wikipedia.org/

202 PART 3 Automating the Internet

example. This script uses Chrome as the browser, as evidenced by code near the
stop of the script:

fill_form_one.py

pip install selenium webdriver-manager

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.chrome.service import Service

from webdriver_manager.chrome import ChromeDriverManager

import time

def open_page(url, search_box_id, search_term, click_submit):

 # Set up the Chrome WebDriver, requires import Service above

 driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()))

 driver.get(url)

 # Find the search input field and fill it with the search term.

 # The following line requires you to import By, as shown earlier.

 search_box = driver.find_element(By.ID, search_box_id)

 # The following line requires you to import Keys, as shown earlier.

 search_box.send_keys(search_term)

 # Optional; wait to see input before submitting.

 time.sleep(2)

 # Click Submit or press Enter depending on the click_submit flag.

 if click_submit:

 submit_button = driver.find_element(By.XPATH, "//button

[@type='submit']")

 submit_button.click()

 else:

 search_box.send_keys(Keys.RETURN)

 return driver

def main():

 # Define the page URL.

 site_url = "https://www.wikipedia.org/"

 # The ID of the text box to fill

 search_box_id = "searchInput"

 # What to type into the Search box

 search_term = "Blue whale"

 # Set to True if you want to click Submit at end.

CHAPTER 10 Automating the Web 203

 # Otherwise, set to False to just press Enter.

 click_submit = False

 # Open the page and perform the search, with exception handling

 try:

 driver = open_page(site_url, search_box_id, search_term, click_submit)

 except Exception as e:

 print(f"An error occurred: {e}")

 finally:

 print("\nScript completed; browser remains open.")

 input("Press Enter or ^C to exit the script and close the browser\n")

 driver.quit()

if __name__ == "__main__":

 main()

In the following sections, I focus on the code in this script that finds and fills the
searchInput box.

Finding a control
A key element in the script is the code that finds and fills the Search box. The
script stores the id of that control, searchInput for Wikipedia, in a variable
named search_box_id in this line:

search_box_id = "searchInput"

The following code then finds that control and uses send_keys to type the search
term, which is stored in a variable named search_term, into that text box. Then it
pauses for two seconds so you can see in the browser that the text has been placed
into the text box:

Find the search input field and fill it with the search term.

The following line requires you to import By, as shown earlier.

search_box = driver.find_element(By.ID, search_box_id)

The following line requires you to import Keys, as shown earlier.

search_box.send_keys(search_term)

Optional; wait to see input before submitting.

time.sleep(2)

To complete the process, the script needs to submit the search term, as described
in the following section.

204 PART 3 Automating the Internet

Submitting a form with Enter
In addition to typing text into text boxes, you typically want your script to submit
the text. On page with multiple controls, you generally do this by clicking a Submit
button. However, just pressing Enter after typing your text often works, too,
especially with pages that offer a single text box like search engines and artificial
intelligence (AI) chatbots.

The Wikipedia site used in the previous script has no Submit button. To search the
site, you can type your search prompt and press Enter. The script uses the follow-
ing line of code to press Enter while the cursor is still in the Search box:

search_box.send_keys(Keys.RETURN)

To use the script with another website, first make sure you’re using Chrome as
your browser, or adjust the imports and set the driver variable near the top of the
script to your preferred browser. Then use the main() function shown next to
specify your web page and the id of the text box you want to fill, by setting the
site_url and search_box_id variables to the appropriate values. If the page has
a Submit button, and you want the script to click that instead of pressing Enter,
set the click_submit variable to True.

def main():

 # Define the page URL.

 site_url = "https://www.wikipedia.org/"

 # The ID of the text box to fill

 search_box_id = "searchInput"

 # What to type into the Search box

 search_term = "Blue whale"

 # Set to True if you want to click Submit at end.

 # Otherwise, set to False to just press Enter.

 click_submit = False

I show you how to write a script that clicks Submit to submit a form later in this
chapter. That’s more likely to happen on pages with multiple input controls, so I’ll
start by looking at a script that fills multiple text boxes.

Filling Multiple Text Boxes
Let’s talk about filling multiple text boxes on a web page. Here’s an example
HTML form with several text boxes, each with an id that starts with "tb" (short for
text box). The form also includes a Submit button. The specific id names on a real
site can vary, but I’ll use this as a working example for the next script.

CHAPTER 10 Automating the Web 205

<form>

 <input type="text" id="tbFirstName">

 <input type="text" id="tbLastName">

 <input type="text" id="tbUserName">

 <input type="tel" id="tbCellPhone">

 <button type="submit" id="submit_button">Submit</button>

</form>

Following is a script that can type text into each text box and then click the Submit
button. Most of the code is the same as the previous example, but it’s adapted to
fill multiple fields and then click Submit.

fill_form_multi.py

pip install selenium webdriver-manager

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.chrome.service import Service

from webdriver_manager.chrome import ChromeDriverManager

def open_and_fill_page(site_url, sample_data, click_submit):

 # Initialize Chrome WebDriver with automatic driver management.

 service = Service(ChromeDriverManager().install())

 driver = webdriver.Chrome(service=service)

 try:

 # Open the form page.

 driver.get(site_url)

 # Fill in the text boxes using their IDs from sample_data dictionary.

 for control_id, value in sample_data.items():

 driver.find_element(By.ID, control_id).send_keys(value)

 if click_submit:

 submit_button = driver.find_element(By.XPATH, "//button[@

type='submit']")

 submit_button.click()

 else:

 # Get the last control ID from sample_data dictionary.

 last_control_id = list(sample_data.keys())[-1]

 driver.find_element(By.ID, last_control_id).send_keys(Keys.RETURN)

206 PART 3 Automating the Internet

 print("Form filled successfully!")

 except Exception as e:

 print(f"An error occurred: {e}")

 finally:

 # Keep the browser open for inspection.

 print("Script completed; browser remains open.")

 input("Press Enter to exit the script and close the browser...")

 driver.quit()

def main():

 # Define site URL.

 site_url = "https://replace_with_your_url.com/form.html"

 # Each key should be the ID of the control to fill in the HTML form.

 sample_data = {

 "tbFirstName": "John",

 "tbLastName": "Doe",

 "tbUserName": "johndoe123",

 "tbCellPhone": "123-456-7890"

 }

 # Set to True to click the Submit button; otherwise, set to False.

 click_submit = True

 # Open the page, fill the controls, and optionally click Submit.

 open_and_fill_page(site_url, sample_data, click_submit)

if __name__ == "__main__":

 main()

In this script, the job of finding each control on the page to be filled, and then typ-
ing in the desired text, is handled by the following loop:

Fill in the text boxes using their IDs from sample_data dictionary.

for control_id, value in sample_data.items():

 driver.find_element(By.ID, control_id).send_keys(value)

The loop goes through each control_id and value in sample_data. For each pair,
driver.find_element(By.ID, control_id) locates the text box by its id, and
.send_keys(value) types the value associated with that control_id. A slick
trick, indeed, that selenium makes it so easy to copy text into text boxes, for any
number of controls, just using a couple of lines of code.

CHAPTER 10 Automating the Web 207

Clicking a form’s Submit button
After the loop has completed the task of typing text into all the text boxes on the
form, the following lines click the Submit button to submit the form:

submit_button = driver.find_element(By.XPATH, "//button[@type='submit']")

submit_button.click()

That syntax is, admittedly, a bit strange looking. The word driver refers to
the Selenium WebDriver instance that’s currently controlling the browser. The
.find_element() method tells the driver to locate a specific element on the
page. By.XPATH specifies the method to locate the element, which is what
Selenium uses to locate tags in HTML documents. Then the crazy-looking
"//button[@type='submit']" expression starts with //, which tells XPath to
search the entire page to look for a button that has a type="submit" attribute.
That line simply finds the button; the following line actually clicks it:

submit_button.click()

I’ve tried to make the script as generic as possible, even though no two web pages
are exactly alike in terms of URL or controls on a page. In the following section,
I explain how to adapt it to your own use case.

Adapting the script to your needs
To adapt this script to your own needs, set the variables in the main() function. Be
sure to set the site_url to the URL of the page that contains your form. The
sample_data variable must be a dictionary with the ID of each text box to fill, fol-
lowed by a colon and the text to type into that text box. Here, you can see that the
dictionary keys match the IDs of the sample HTML form I show you near the start
of this section:

Each key should be the ID of the control to fill in the HTML form.

sample_data = {

 "tbFirstName": "John",

 "tbLastName": "Doe",

 "tbUserName": "johndoe123",

 "tbCellPhone": "123-456-7890"

}

If the form requires clicking Submit, make sure to set click_submit to True in
your code.

208 PART 3 Automating the Internet

Inside the open_and_fill_page() function, the following loop handles the job of
filling each text box with appropriate data from the sample_data variable, which
contains the dictionary defined in the main() function:

Fill in the text boxes using their IDs from sample_data dictionary.

for control_id, value in sample_data.items():

 driver.find_element(By.ID, control_id).send_keys(value)

When you set click_submit to True in Main(), the following code executes to
click Submit after all the text fields have been filled:

if click_submit:

 submit_button = driver.find_element(By.XPATH, "//button[@type='submit']")

 submit_button.click()

Filling Text Boxes from a File
In this section, you take what you’ve learned so far one step further. Let’s say you
have quite a bit of data put into a form, stored in a JavaScript Object Notation
(JSON) file, and you want to put all the data into the form. For the sake of example,
let’s say that file is named data.json, and it’s stored in the same folder as your
Python code. Here are the file’s contents:

[

 {

 "tbFirstName": "Alice",

 "tbLastName": "Smith",

 "tbUserName": "alicesmith456",

 "tbCellPhone": "234-567-8901"

 },

 {

 "tbFirstName": "Bob",

 "tbLastName": "Johnson",

 "tbUserName": "bobjohnson789",

 "tbCellPhone": "345-678-9012"

 },

 {

 "tbFirstName": "Carol",

 "tbLastName": "Williams",

CHAPTER 10 Automating the Web 209

 "tbUserName": "carolw123",

 "tbCellPhone": "456-789-0123"

 },

 {

 "tbFirstName": "David",

 "tbLastName": "Brown",

 "tbUserName": "davidb456",

 "tbCellPhone": "567-890-1234"

 }

]

For this to work, the code needs to open the data.json file. Then in a loop, it
converts each JSON object into a data dictionary, types the text into the text boxes,
and clicks Submit each time it fills a form. Here’s a complete script that does
exactly that:

fill_form_from_file.py

pip install selenium webdriver-manager

import json

import time

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.common.keys import Keys

from selenium.webdriver.chrome.service import Service

from webdriver_manager.chrome import ChromeDriverManager

def open_and_fill_page(driver, sample_data, click_submit):

 try:

 # Fill in the text boxes using their IDs from the sample_data

dictionary.

 for control_id, value in sample_data.items():

 # Locate each element, clear any existing text, and then send keys.

 element = driver.find_element(By.ID, control_id)

 element.clear()

 element.send_keys(value)

 # Pause before clicking Submit.

 time.sleep(2)

 if click_submit:

 submit_button = driver.find_element(By.XPATH, "//button

[@type='submit']")

 submit_button.click()

210 PART 3 Automating the Internet

 else:

 # Get the last control ID from sample_data dictionary and simulate

pressing Enter.

 last_control_id = list(sample_data.keys())[-1]

 driver.find_element(By.ID, last_control_id).send_keys(Keys.RETURN)

 print("Form filled and submitted successfully!")

 except Exception as e:

 print(f"An error occurred while processing data: {e}")

 finally:

 # Pause for two seconds after processing each form.

 time.sleep(2)

def main():

 # Define site URL.

 site_url = "https://your_url_here.com/form.html"

 # Initialize Chrome WebDriver (opened only once).

 service = Service(ChromeDriverManager().install())

 driver = webdriver.Chrome(service=service)

 # Open the form page.

 driver.get(site_url)

 # Load JSON data from file.

 with open("data.json", "r") as f:

 data_list = json.load(f)

 # Process each JSON object to fill and submit the form.

 for sample_data in data_list:

 open_and_fill_page(driver, sample_data, click_submit=True)

 print("All forms submitted successfully!")

 # Keep the browser open until the user presses Enter.

 input("Press Enter to close the browser...")

 driver.quit()

if __name__ == "__main__":

 main()

CHAPTER 10 Automating the Web 211

As with other scripts in this section, fill in the site_url variable with the link to
the page in which the script will be filling the data. This script already assumes
that it needs to click Submit after filling each form, so there is no need to set a
variable for that.

If your data is in a CSV file, you should be able to just copy its data into any AI and
tell the AI to “convert this CSV data into JSON” to create your JSON file.

The code assumes the data file is a JSON file named data.json in the same folder
as the code. If you need to change that, do so in the code directly here:

with open("data.json", "r") as f:

The rest of the code is much like the two previous examples. The only real
difference is that each dictionary object being typed into the form is stored in a
JSON file.

CHAPTER 11 Scraping Web Pages 213

Chapter 11
Scraping Web Pages

In the previous chapter, you automated the web browser to fill out forms. The
star of that show was the Selenium library. In this chapter, you automate
the browser to extract data from websites instead of entering it.

The technique you’ll use is sometimes called web scraping. It’s also sometimes
called screen scraping, because it seems as though the code is pulling content right
from the screen. In reality, the content is pulled from the web page .html or .htm
file. So, you can extract Hypertext Markup Language (HTML) tags along with any
other content on the page.

Picking the Right Tools for Web Scraping
The most widely used module for web scraping is BeautifulSoup, from the bs4
package. An optional secondary tool, lxml, offers some speed advantages over
html.parser, which is part of the Python standard library, for extracting content
from the web page.

BeautifulSoup is also often used with the requests library, used for making web
requests from Python. Before writing a script that uses BeautifulSoup, create and

IN THIS CHAPTER

	» Understanding screen scraping

	» Scraping elements from web pages

	» Extracting data from web pages

	» Automating internet data extraction

214 PART 3 Automating the Internet

activate your virtual environment; then import all three modules by entering the
following commands in the Terminal:

pip install beautifulsoup4 lxml requests

To provide a relatively simple example, I’ll show you how to extract the URLs from
all the links on a web page. This technique can be used to extract all the URLs for
any given topic. You may use those links to explore web pages about any topic, or
to curate your own links to recommend to your own followers or website visitors.

Scraping Links from a Web Page
The basic idea behind BeautifulSoup and web scraping is to download a web page
from some location, defined by its URL. The page is downloaded into an object in
your code, which you can then parse for any information you need. Here’s a rela-
tively simple page that extracts the URLs from all the links on a web page. This
script illustrates some code and basic concepts of all Python web-scraping scripts:

scrape_links.py

pip install requests beautifulsoup4 lxml

import requests

from bs4 import BeautifulSoup

def get_links(page_url):

 # Headers to mimic a browser

 headers = {

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "

 "AppleWebKit/537.36 (KHTML, like Gecko) "

 "Chrome/95.0.4638.69 Safari/537.36"

 }

 try:

 # Send HTTP request and get the page content.

 response = requests.get(page_url, headers=headers)

 response.raise_for_status() # Check for request errors

 # Parse the page content with BeautifulSoup.

 soup = BeautifulSoup(response.content, "lxml")

 # Optional; use html.parser; doesn't require lxml.

 # soup = BeautifulSoup(response.content, "html.parser")

CHAPTER 11 Scraping Web Pages 215

 # Find all <a> tags and extract href attributes.

 links = soup.find_all("a")

 # Print each link's href (if it exists).

 for link in links:

 href = link.get("href")

 if href and href.startswith("https://"):

 print(href)

 except requests.RequestException as e:

 print(f"Error fetching the page: {e}")

def main():

 # URL of the web page to scrape.

 page_url = "https://en.wikipedia.org/wiki/Platypus"

 get_links(page_url)

if __name__ == "__main__":

 main()

I’ll step through this script and discuss key components. The imports at the top of
the page load the requests module (for accessing a web page) and bs4 from
BeautifulSoup. BeautifulSoup is a library of code, and bs4 is a core component
for parsing web pages.

Even though you pip install lxml, you don’t need an import lxml statement
in your script to use it. BeautifulSoup will use lxml, when needed, as long as it’s
available because you installed it.

Sending a browser header
When you browse the web using a web browser, your browser identifies itself with
a User-Agent header. This sometimes includes text that identifies the browser and
the operating system you’re using.

When you access a site using an automation script, no such header is sent. Some
sites may reject or limit access to pages on the assumption that the script is a
search engine indexer or an advertising-related bot that adds a lot of traffic
to the site.

216 PART 3 Automating the Internet

When you’re simply scraping data from pages and not putting a huge load on the
server, you can have your script send a User-Agent header to appear as a browser
for low-volume web scraping. That’s what this line in the sample code offers:

headers = {

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "

 "AppleWebKit/537.36 (KHTML, like Gecko) "

 "Chrome/95.0.4638.69 Safari/537.36"

}

You don’t have to change that code in your own script — just use it exactly as
shown. When you make your request for a web page, use the same syntax as in the
sample script:

response = requests.get(page_url, headers=headers)

response is just a variable that stores the page you requested. page_url is the
URL of the web page you’re requesting. As you may have guessed, the argument
header=headers passes the User-Agent header (defined in the headers variable)
to the web server, telling the server to return the page exactly as if a web browser
had made the request.

Parsing a web page
The response object that receives the requested web page can’t be parsed directly.
You need to copy that web page to a BeautifulSoup object for parsing. The following
code does exactly that:

soup = BeautifulSoup(response.content, "lxml")

In this example, I’ve specified the faster, more modern lxml parser for parsing the
soup object. If you have any trouble with that one and prefer to use the older html.
parser, you can write your code as follows instead:

soup = BeautifulSoup(response.content, "html.parser")

I’ve included that line of code in the script, commented out so it’s not executed. I
just put it there as a syntax example. If you prefer to use it, you can comment out
the line that uses the lxml parser and remove the # from the front of the line that
uses html.parser.

After the page has been loaded into a BeautifulSoup object, (soup in the working
example), you can loop through HTML elements by their tag — for example "p"

CHAPTER 11 Scraping Web Pages 217

for paragraphs (<p>...</p> in HTML) or "li" for list items (...).
Here, you loop through all links (<a>...) on the page:

links = soup.find_all("a")

After that line executes, the links variable contains all the <a>... tags in the
page. Links always contain an href= attribute that identifies the target of the link.
This next bit of code then loops through all the links, and for any link that has an
href= value that starts with https:// (meaning it points to a page outside the
current page), it prints that URL:

for link in links:

 href = link.get("href")

 if href and href.startswith("https://"):

 print(href)

To personalize the script for your own use, set the page_url variable to the URL
of the page from which you want to extract links:

page_url = "https://en.wikipedia.org/wiki/Platypus"

You can use this script to create an extensive list of web pages related to any topic
by scraping links from different pages related to the topic of interest (the mighty
platypus, in this example).

Extracting Data from a Web Page
Web scraping isn’t limited to extracting HTML elements from a page. You can also
extract specific items of data, so long as you can find some way of identifying the
data to extract. In some cases, you may be able to use the HTML id attribute, as
when filling text boxes. But there may be times when you need to rely on some
other identifier.

Often, the easiest way to find unique identifiers is simply to ask artificial intelli-
gence (AI) to “Write a python script to extract data from the page at URL using
BeautifulSoup.” Replace data with a description of the fields from which you want
to extract data, and replace URL with the URL of the web page.

For a working example, I’ll use the Books to Scrape website (https://books.
toscrape.com), which is a website pretending to sell books, offering easy access
to people learning how to scrape and access data automatically, like we’re doing
right now. Each book at the site has a cover image, a rating, a title, a price in
British pounds (GBP), and more, as shown in Figure 11-1.

https://books.toscrape.com/
https://books.toscrape.com/

218 PART 3 Automating the Internet

Finding elements to scrape
You need to look at the HTML code of a page to find a way to identify the elements
you want to scrape from the page. The easiest way to do that is to right-click the
item in your browser and choose Inspect. In this example, you would discover that
each book is enclosed in <article>...</article> tags with a Cascading Style
Sheets (CSS) class of "product_pod", like this:

<article class="product_pod">...</article>

Within those tags, the title of the book is enclosed in <a>... tags after a
title= attribute inside the <a>... tags:

<a href="catalogue/tipping-the-velvet_999/index.html" title="Tipping the

Velvet">Tipping the Velvet

The price of the book is inside a paragraph with a style class of price_color:

<p class="price_color">£53.74</p>

Books to Scrape contains 50 pages of sample books you can access and scrape data
from. So, how do you get through all 50 pages and scrape just the book titles and
prices? The following script does exactly that. I’ll show you the whole script first,
with lots of comments. In the following sections, I focus on key elements of the
script for scraping data from each page:

scrape_books.py

pip install requests bs4 lxml

import requests

FIGURE 11-1:
One row of data

from Books
to Scrape.

CHAPTER 11 Scraping Web Pages 219

from bs4 import BeautifulSoup

import time

page_url = "https://books.toscrape.com/catalogue/page-{}.html"

headers = {

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "

 "AppleWebKit/537.36 (KHTML, like Gecko) "

 "Chrome/95.0.4638.69 Safari/537.36"

}

Exchange rate to convert GBP to USD

exchange_rate = 1.3 # 1 GBP = 1.3 USD

def get_soup(url):

 # Fetch the page content and return a BeautifulSoup object.

 try:

 response = requests.get(url, headers=headers, timeout=10)

 response.raise_for_status()

 return BeautifulSoup(response.content, 'lxml')

 except requests.RequestException as e:

 print(f"Error fetching {url}: {e}")

 return None

def scrape_books():

 page = 1

 all_books = []

 # There are 50 pages of books on the site.

 while page <= 50:

 # Copy one page to a BeautifulSoup object.

 url = page_url.format(page)

 soup = get_soup(url)

 if not soup:

 break # Stop if the page could not be loaded.

 # Selects all articles that are books

 books = soup.select('article.product_pod')

 # If no books are found, break the loop.

 if not books:

 break

 # Loop through each book and extract the title and price.

 for book in books:

 try:

 # Extract the title.

 title = book.h3.a['title']

 # Extract the price.

 price_text = book.select_one('p.price_color').text

 # Convert the price to a float no currency symbol.

220 PART 3 Automating the Internet

 price_str = price_text.lstrip('£').strip()

 price_gbp = float(price_str)

 except (AttributeError, ValueError):

 continue # Skip any book with missing/invalid data.

 # Convert GBP to USD (optional)

 price_usd = price_gbp * exchange_rate

 all_books.append((title, price_usd))

 print(f"Scraped page {page}")

 page += 1
 time.sleep(0.5)

 return all_books

def main():

 # Set max_price to a USD value to filter books based on price.

 # Example: Only show books with a price at or below US$20.

 max_price = 20.0

 # For no limit set to None

 # max_price = None

 # Scrape the books.

 books = scrape_books()

 # If there are books, list them with their prices.

 if books:

 print(f"\nBooks with converted USD prices:")

 for title, price in books:

 # Filter books based on max_price if set.

 if max_price is None or price <= max_price:

 print(f"{title} - ${price:.2f}")

 else:

 print("No books found.")

if __name__ == "__main__":

 main()

The script needs to access one page at a time in order to scrape book data. Notice
the URL defined in this line of code:

page_url = https://books.toscrape.com/catalogue/page-{}.html

The square brackets are just a placeholder. Each page is actually numbered, such
as page-1.html, page-2.html, page-3.html, and so forth.

CHAPTER 11 Scraping Web Pages 221

In the script, the code to go through each page of the site is near the top of the
scrape_books() function:

def scrape_books():

 page = 1

 all_books = []

 # There are 50 pages of books on the site.

 while page <= 50:

The page variable is the current page number (we start at 1). all_books is an
empty list that will grow as we get books from each page. The loop will keep loop-
ing until page is less than or equal to 50, so all 50 pages of the site are visited.

Near the end of that loop are the following lines of code:

print(f"Scraped page {page}")

page += 1
time.sleep(0.5)

The print statement simply provides some feedback in the Terminal as to which
page was processed. The page+=1 line then increments the page counter by 1. The
time.sleep line just pauses execution for a moment. When web scraping, it’s a
good idea to pause for half a second to a second when performing a repetitive task.
If you try to go too fast, you risk overloading the server.

Scraping a web page too fast can also trigger web server security algorithms that
watch for bots that are extracting large amounts of data from the site. If your
script is being blocked by a server at high speed, try adding some time.sleep()
code to slow down processing.

Scraping data from the page
Next, let’s take a look at how we access one book at a time, and grab the title and
unit price from each book. First, the code selects all the article.product_pod
elements from the BeautifulSoup object (soup):

books = soup.select('article.product_pod')

In other words, that line grabs every element that starts with <article
class="product_pod"> and ends with </article> and puts each into a list
named books.

222 PART 3 Automating the Internet

Then the line for book in books processes one book at a time from that list.
Inside that loop, the following line grabs the book title, which is stored as the
title= attribute inside <a>... tags inside <h3>...</h3> tags:

title = book.h3.a['title']

The next line grabs the price from between the <p class= "price_
color"> ... </p> tags.

price_text = book.select_one('p.price_color').text

Subsequent code removes the currency symbol from the price and converts it from
a string to a quote. The rest of the code just displays the script’s progress through
the pages, handles exceptions, and lists all the book titles at the end of the script.

If you’re not familiar with HTML and CSS, identifying elements to scrape can be
especially daunting. I’ve had good luck with AI being able to isolate data from web
pages for me. Just make sure you word your prompt something like “Write a
Python script that scrapes data from URL using BeautifulSoup,” and replace data
with the elements you want to scrape and replace URL with the URL of the web
page to scrape.

There isn’t much I can do to make this particular script generic, because there are
countless web pages and data elements. However, I did put this line into the
main() function:

max_price = 20.0

You can change that line to limit the output to books at or under a price point in
US dollars. For example, setting max_price to 20 lists only books that cost $20 or
less. If you don’t want to set a price limit, you can set max_price to None like this:

max_price = None

Automating Data Extraction
Let’s take data extraction a step further, and say you want a script that automati-
cally extracts data every one minute or so from a live site, but only during busi-
ness hours when the data is changing. In this section, I show you a script that does
just that, by extracting index prices every minute from the US stock market while
the market is open.

CHAPTER 11 Scraping Web Pages 223

I’ll start by showing you the entire script, below. Then I’ll follow by pointing out
key elements that are unique to this script.

scrape_stocks_auto.py

pip install requests beautifulsoup4 tzdata holidays

import requests

from bs4 import BeautifulSoup

import time

from datetime import date, datetime

from zoneinfo import ZoneInfo

import holidays

Is today a weekday and not a holiday?

def is_business_day():

 # Get current date.

 today = date.today()

 # Create US holidays object.

 us_holidays = holidays.US()

 # Check if today is a weekday (Monday=0, Sunday=6).

 is_weekday = today.weekday() < 5

 # Check if today is a US federal holiday.

 is_not_holiday = today not in us_holidays

 return is_weekday and is_not_holiday

Stock market open hours

def is_market_open(now):

 # Stock market open hours are 9:30 AM to 4:00 PM EST.

 open_time = now.replace(hour=9, minute=30, second=0, microsecond=0)

 close_time = now.replace(hour=16, minute=0, second=0, microsecond=0)

 return is_business_day() and open_time <= now < close_time

Get one index price (DOW, S&P 500, or Nasdaq).

def get_index_price(url, symbol):

 headers = {

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "

 "AppleWebKit/537.36 (KHTML, like Gecko) "

 "Chrome/95.0.4638.69 Safari/537.36"

 }

 try:

 response = requests.get(url, headers=headers)

 response.raise_for_status()

 except Exception as e:

 print(f"Failed to retrieve data from {url}: {e}")

 return None

224 PART 3 Automating the Internet

 # Put page into a soup object and parse for index price.

 soup = BeautifulSoup(response.text, "html.parser")

 # Look for the fin-streamer tag with both the regularMarketPrice field and

matching symbol.

 price_tag = soup.find("fin-streamer", {"data-field": "regularMarketPrice",

"data-symbol": symbol})

 if price_tag:

 return price_tag.text.strip()

 else:

 print(f"Unable to find the price for symbol {symbol}.")

 return None

def main():

 # Dictionary now contains tuples of (url, symbol).

 indices = {

 "Dow Jones": ("https://finance.yahoo.com/quote/%5EDJI", "^DJI"),

 "S&P 500": ("https://finance.yahoo.com/quote/%5EGSPC", "^GSPC"),

 "Nasdaq": ("https://finance.yahoo.com/quote/%5EIXIC", "^IXIC")

 }

 # Time zone for US Eastern time

 eastern_tz = ZoneInfo("America/New_York")

 # Current time in time zone

 now = datetime.now(eastern_tz)

 # If not open, don't run the rest of the code.

 if not is_market_open(now):

 print("\nUS Stock Market is Closed\n")

 return

 # Print the opening message and index prices.

 print("\nUS Stock Market Open")

 print("Initial US Index Prices:")

 for index_name, (url, symbol) in indices.items():

 price = get_index_price(url, symbol)

 if price:

 print(f"{index_name} Index Price: {price}")

 else:

 print(f"{index_name}: Price not found.")

CHAPTER 11 Scraping Web Pages 225

 # Loop to update prices every minute while the market is open.

 while is_market_open(datetime.now(eastern_tz)):

 current_time = datetime.now(eastern_tz).strftime('%Y-%m-%d %H:%M:%S')

 print(f"\n------ Updated Prices at {current_time} ------")

 for index_name, (url, symbol) in indices.items():

 price = get_index_price(url, symbol)

 if price:

 print(f"{index_name} Index Price: {price}")

 else:

 print(f"{index_name}: Price not found.")

 time.sleep(60) # Update every 1 minute

 print("\nMarket update complete.")

if __name__ == "__main__":

 main()

In the next section, I explain how this script determines whether the stock market
is currently open.

Determining whether a business is open
This script shows how you can limit your automation script to run only on certain
days and times. To help with that, this script requires two modules that aren’t
part of the standard Python library: tzdata (which helps with time zones) and
holidays (which lists US holidays).

Because this is a web scraping script, it also requires the requests and
BeautifulSoup modules. So, to use this script, make sure you create and
activate your virtual environment. Then enter the following command in
the Terminal:

pip install requests beautifulsoup4 tzdata holidays

Now let’s take a look at two functions that allow this script to determine whether
the US stock market is currently open. The first is the function named
is_business_day():

Is today a weekday and not a holiday?

def is_business_day():

 # Get current date.

 today = date.today()

 # Create US holidays object.

226 PART 3 Automating the Internet

 us_holidays = holidays.US()

 # Check if today is a weekday (Monday=0, Sunday=6).

 is_weekday = today.weekday() < 5

 # Check if today is a US federal holiday.

 is_not_holiday = today not in us_holidays

 return is_weekday and is_not_holiday

The function is pretty simple. The today variable gets the current date. Then the
variable is_weekday is set to True if the current day is a weekday (day 0 to 5), and
that date is not in the list of US holidays. In other words, the function returns True
only if the current day is a weekday and not a holiday.

The US stock market is open from 9:30 AM to 4:00 PM. Here’s the function that
determines whether the current time is between those hours:

Stock market open hours

def is_market_open(now):

 # Stock market open hours are 9:30 AM to 4:00 PM EST

 open_time = now.replace(hour=9, minute=30, second=0, microsecond=0)

 close_time = now.replace(hour=16, minute=0, second=0, microsecond=0)

 return is_business_day() and open_time <= now < close_time

Notice that the is_market_open(now) function returns True, only if
is_business_day() is True, open_time is less than (earlier than) or equal to the
current time, and the current time is less than the close time. Subsequent code
can determine whether the stock market is currently closed using the simple if
statement:

If not open, don't run the rest of the code.

if not is_market_open(now):

 print("\nUS Stock Market is Closed\n")

 return

When you run the script, you see a message that the stock market is closed. The
script won’t keep checking every minute.

If the stock market is open, the following while loop scrapes the index prices
from the screen every 60 seconds:

Loop to update prices every minute while the market is open.

while is_market_open(datetime.now(eastern_tz)):

 current_time = datetime.now(eastern_tz).strftime('%Y-%m-%d %H:%M:%S')

 print(f"\n------ Updated Prices at {current_time} ------")

 for index_name, (url, symbol) in indices.items():

 price = get_index_price(url, symbol)

CHAPTER 11 Scraping Web Pages 227

 if price:

 print(f"{index_name} Index Price: {price}")

 else:

 print(f"{index_name}: Price not found.")

 time.sleep(60) # Update every 1 minute

Inside that loop, the line that reads price = get_index_price(url, symbol)
uses the get_index_price() function to scrape the index price for a stock symbol
when called. In the next section, I explain how that part works.

Scraping stock market data
The script I’m discussing here scrapes the current index price for the Dow, S&P
500, and Nasdaq from the following pages at Yahoo! Finance:

	» https://finance.yahoo.com/quote/%5EDJI

	» https://finance.yahoo.com/quote/%5EGSPC

	» https://finance.yahoo.com/quote/%5EIXIC

The HTML tags in which prices are contained look like this in the page’s HTML
code (I’ve summarized a bit so you can see key items):

<fin-streamer data-symbol="^IXIC" data-field="regularMarketPrice">

 18,708.34

</fin-streamer>

Using DevTools in a browser to find data to scrape can be challenging. Consider
asking AI to write your entire script for you first. I’ve had great luck with that
in the past.

The loop that accesses each page loops through this dictionary that uses the
common name of an index as a key, followed by the URL of the page where the
price can be found, and the Yahoo! ticker symbol, such as ^DJI for the Dow, ^GSPC
for the S&P 500, and ^IXIC for the Nasdaq.

Dictionary now contains tuples of (url, symbol).

indices = {

 "Dow Jones": ("https://finance.yahoo.com/quote/%5EDJI", "^DJI"),

 "S&P 500": ("https://finance.yahoo.com/quote/%5EGSPC", "^GSPC"),

 "Nasdaq": ("https://finance.yahoo.com/quote/%5EIXIC", "^IXIC")

}

https://finance.yahoo.com/quote/%5EDJI
https://finance.yahoo.com/quote/%5EGSPC
https://finance.yahoo.com/quote/%5EIXIC

228 PART 3 Automating the Internet

In the indices dictionary, the %5E at the end of each URL represents the caret
symbol (^), which can’t be typed directly into a URL due to web standards. For
example %5EDJI represents ^DJI, the Yahoo! ticker symbol for the Dow.

The get_index_price() function uses the request module to send a page request
for one URL at a time to the web server. The page is returned to a variable named
response, as in other examples in this chapter.

Get one index price (DOW, S&P 500, or Nasdaq).

def get_index_price(url, symbol):

 headers = {

 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "

 "AppleWebKit/537.36 (KHTML, like Gecko) "

 "Chrome/95.0.4638.69 Safari/537.36"

 }

 try:

 response = requests.get(url, headers=headers)

 response.raise_for_status()

 except Exception as e:

 print(f"Failed to retrieve data from {url}: {e}")

 return None

Assuming there were no problems accessing the page, the next lines put the page
into a BeautifulSoup object named soup in the following code. Then the price is
pulled from the <fin-streamer> tag and returned by the function. As usual, the code
contains exception handling to prevent the script from crashing if some unfore-
seen problem prevents successful scraping of the data:

Put page into a soup object and parse for index price

soup = BeautifulSoup(response.text, "html.parser")

Look for the fin-streamer tag with both the regularMarketPrice field and

matching symbol

price_tag = soup.find("fin-streamer", {"data-field": "regularMarketPrice",

"data-symbol": symbol})

if price_tag:

 return price_tag.text.strip()

else:

 print(f"Unable to find the price for symbol {symbol}.")

 return None

CHAPTER 12 Automating Email and Text Messages 229

Chapter 12
Automating Email and
Text Messages

In this chapter, you explore Python automation for email and text messages. You
can use these scripts to automate marking emails, send newsletters, remind
people of upcoming appointments, and more.

For sending email messages, you’ll need an email account and the built-in
smtp module. You can send plain-text messages or messages formatted with
HTML. If your email recipient addresses are in an app, you can export them to a
simple text file and have Python send an email to every address in that file.

For text messaging, you’ll need an account with the ability to send Short
Message Service (SMS) messages, which you’ll access through an application
programming interface (API). I take you through all the necessary steps using the
popular Twilio service for sending bulk text messages. That service includes a
free tier, so you can learn without spending any additional money.

Sending Bulk Email Automatically
Sending email can be a great way to keep in touch with subscribers, customers,
followers, or any other group of people for whom you’ve acquired email addresses.
You can send reminders, newsletters, invitations, product announcements, or
whatever works for your business or organization. To get started, you’ll need to
gather some information about your email account.

IN THIS CHAPTER

	» Automating sending email messages

	» Sending text messages automatically

230 PART 3 Automating the Internet

Collecting account information
To send emails automatically, you’ll need some technical information about your
email account. Typically, you can find this by logging into your email account via
a web browser and searching its documentation or settings or by asking AI. To set
up an automation script for your own email, you’ll need the following information
about your email account and service provider:

	» Username: The username you use to log into your email account

	» Password: The password you use to log into your email account

	» Email address: Could be the same as your username

	» Simple Mail Transfer Protocol (SMTP) server address: A URL for sending
email messages (typically something like smtp.gmail.com or smtp-mail.
outlook.com)

	» SMTP port: Typically 587 for Transport Layer Security (TLS) or 465 for Secure
Sockets Layer (SSL)

SMTP is a standard protocol used for sending emails across the internet. It’s used
by popular email services, including Gmail, Microsoft Outlook, Proton Mail,
Yahoo! Mail, and many others.

TLS is a newer, more secure protocol for internet encryption. It uses port 587. SSL
is older and less secure and uses port 465.

Creating a .env file
Putting passwords and other sensitive data directly into your Python code risks
exposing that information to others, if you share your code or post it to GitHub.
You’re better off putting that information in a .env file in the same folder as your
code, and not sharing it with your source code.

To create a .env file, first create your project folder normally. Create and activate a
virtual environment. Enter the following command in the Terminal to install the
dotenv module:

pip install python-dotenv

If you’re using VS Code, create the .env file the same way you’d create a new
script. But don’t use a .py extension. Instead, just name the file .env with no
extension. You can then create variables and values for your account information
like the example shown in Figure 12-1.

http://smtp.gmail.com
http://smtp-mail.outlook.com
http://smtp-mail.outlook.com

CHAPTER 12 Automating Email and Text Messages 231

The values shown in Figure 12-1 are just hypothetical and won’t work if you try
them. You must provide the actual information for your own email account.

If there’s any chance you’ll be sharing your code on GitHub, also create a
.gitignore file and include both .env and .venv in that file (see Chapter 9 for
more information).

Creating your email-sending script
I’ll show you an entire script for sending a plain-text email to multiple addresses
automatically. Then I’ll discuss key features and ways to adapt the script to your
own needs.

email_send.py

pip install python-dotenv

import os

import smtplib

from email.mime.text import MIMEText

from email.mime.multipart import MIMEMultipart

from dotenv import load_dotenv

Load environment variables from .env file.

load_dotenv()

def send_bulk_email(subject, body, recipients):

 # Get email credentials and server settings from the .env file.

 outgoing_server = os.getenv("outgoing_server")

 # Change 587 to match port number in your .env file.

 outgoing_port = int(os.getenv("outgoing_port", 587))

 sender_email = os.getenv("sender_mail")

 username = os.getenv("username")

 password = os.getenv("password")

FIGURE 12-1:
A .env file
for Python

SMTP email
automation.

232 PART 3 Automating the Internet

 if not (sender_email and username and password and outgoing_server):

 print("Missing required environment variables.")

 return

 # Create the email message.

 msg = MIMEMultipart()

 msg["From"] = sender_email

 msg["Subject"] = subject

 # Set the email body as plain text.

 msg.attach(MIMEText(body, "plain"))

 try:

 # Connect to the SMTP server.

 server = smtplib.SMTP(outgoing_server, outgoing_port)

 server.ehlo()

 # The next two lines are only needed for port 587.

 server.starttls()

 server.ehlo()

 # Log in with the provided credentials.

 server.login(username, password)

 # Send email to each recipient.

 for recipient in recipients:

 msg["To"] = recipient

 server.sendmail(sender_email, recipient, msg.as_string())

 print(f"Email sent to {recipient}")

 server.quit()

 print("All emails sent successfully!")

 except Exception as e:

 print(f"An error occurred: {str(e)}")

def main():

 # List of recipient email addresses

 recipients = [

 "someone@somewhere.com",

 "customerjow@gmail.com"

 # Add more email addresses as needed

]

 # Email subject and body

 subject = "Test Email"

 body = """

 Hello,

CHAPTER 12 Automating Email and Text Messages 233

 This is a test email sent from a Python script.

 Thank you for your attention!

 Best regards,

 Your Name Here

 """

 # Call the function to send emails

 send_bulk_email(subject, body, recipients)

if __name__ == "__main__":

 main()

This script assumes you’re using the TLS protocol and port 587. If you’re
using SSL and port 465, just change the 587 in the following line to 465 after
outgoing_port=, as shown here:

outgoing_port = int(os.getenv("outgoing_port", 465))

In the code where the script connects to the server, change SMTP to SMTP_SSL.
Then remove the server.starttls() server.ehlo() right below that line, so
the code looks like this:

Connect to the SMTP server.

server = smtplib.SMTP_SSL(outgoing_server, outgoing_port)

server.ehlo()

Log in with the provided credentials.

server.login(username, password)

In case you’re wondering, ehlo stands for Extended Hello. It’s a standard command
sent to SMTP servers to initiate a connection.

To configure the script for a specific audience and message, look to the main()
function. Change the fake email addresses to your own email addresses shown to
your actual audience. For initial testing, you may just want to test the script by
sending messages to yourself. But when you’re comfortable that everything is
working correctly, you can list as many email addresses as you like. Put each email
address in quotation marks, and follow each address (except the lest one), with a
comma, as shown in the example list:

 # List of recipient email addresses

 recipients = [

 "someone@somewhere.com",

 "customerjow@gmail.com"

 # Add more email addresses as needed

]

234 PART 3 Automating the Internet

Also, in the main() function, replace the sample subject with the Subject line for
your own email message. Type the body of the email between the triple quota-
tion marks.

Email subject and body

subject = "Test Email"

body = """

Hello,

This is a test email sent from a Python script.

Thank you for your attention!

Best regards,

Your Name Here

"""

To test the script, run it as you would any other script. Make sure to send a copy
of the email message to yourself, so you can verify that the script worked.

Sending HTML mail
If you prefer to send HTML mail rather than plain-text messages, find the word
plain in the following line:

msg.attach(MIMEText(body, "plain"))

And change it to html, like this:

msg.attach(MIMEText(body, "html"))

Then mark up your email message with HTML and inline CSS as in the follow-
ing example:

body = """

<div style="font:14pt Arial, Helvetica, sans-serif; color:#333;">

<h1>Hello!</h1>

<p>This is a test email sent from a Python script.

Thank you for your attention! Visit our

website for more details.</p>

<p>Best regards,
Your Name Here</p>

</div>

"""

CHAPTER 12 Automating Email and Text Messages 235

If you’re not familiar with using HTML and CSS with email, you can search the
web for tutorials. Or ask any AI questions like “How do I mark up email body text
with HTML and CSS when sending with Python SMTP?” or “How do I include
images in email sent by Python SMTP?”

Putting email recipient addresses in a file
If you have a large number of email recipient addresses in a database or spread-
sheet, and you’d rather send from there, you can export the addresses to a simple
text file. You don’t need quotation marks or commas or anything else. Just export
so that each address is on its own line, like this:

john.doe@example.com

sarah.smith@fakeemail.com

mike.jones@samplemail.com

emily.brown@mockemail.com

david.wilson@testemail.com

In this example, I name the file that contains those addresses email_recipients.
txt and put that file in the same folder as my Python code.

To use the email addresses in the file, rather than a list in code, remove the code
that defines the list of addresses, shown here, in the main() function:

List of recipient email addresses

recipients = [

 "someone@somewhere.com",

 "customerjow@gmail.com"

 # Add more email addresses as needed

]

Replace that code with the following code to build the list from the addresses in
the file. Make sure to provide the correct path and filename of the file. In my case,
I named the file email_recipients.txt and put it in the same folder as the
Python script. So, the following code will work fine with that setup:

Load recipient email addresses from email_recipients.txt

recipients = load_recipients("email_recipients.txt")

236 PART 3 Automating the Internet

Automatically Sending Text Messages
You’ve probably done some texting on your phone, where you send and receive
short text messages via phone numbers. Sending text messages (also known as
SMS messages) to customers is a great way to give them appointment reminders,
announce new events or products, thank them for something, and so on. With
Python and an online service, you can send such messages in bulk automatically,
not just one at a time.

SMS is the technology behind the day-t0-day texts you probably send and receive
on your phone.

Twilio (www.twilio.com) is a popular service for sending texts through Python
automation. As of this writing, they offer a free tier that lets you send a limited
number of texts, so you have time to write and test your code before spending any
money. Visit the Twilio website for more information and to set up your
free account.

TACKLING THROTTLING PROBLEMS
Some SMTP providers limit the rate at which you can send email messages, or the
number of emails you can send per day, to avoid overuse and excessive spamming.
If you need to slow down the script so it doesn’t send at too high a rate, you can add a
delay after each email is sent. Add a time.sleep() to the code in the script, after each
message is sent, as in the following example:

Send email to each recipient

for recipient in recipients:

 msg["To"] = recipient

 server.sendmail(sender_email, recipient, msg.as_string())

 print(f"Email sent to {recipient}")

 time.sleep(1)

If the problem is the number of emails you’re sending each day, you may need
to sign up for a service that has fewer restrictions, such as Amazon Simple Email
Service (https://aws.amazon.com/ses), Mailgun (www.mailgun.com), or
SendGrid (https://sendgrid.com). But you may have to pay for the service,
depending on how much email you intend to send. Feel free to ask AI for help
by asking, “How can I deal with throttling problems when sending email with
Python SMTP?”

https://www.twilio.com/
https://aws.amazon.com/ses
https://www.mailgun.com/
https://sendgrid.com/

CHAPTER 12 Automating Email and Text Messages 237

ClickSend (www.clicksend.com), Courier (www.courier.com), Plivo (www.plivo.
com), SendGrid (https://sendgrid.com), Sinch (https://sinch.com), Telnyx
(https://telnyx.com), and Vonage (www.vonage.com) are other online services
that allow you to send text messages from Python.

Storing SMS account information
To send SMS messages, you’ll need an account with Twilio or a similar service
provider. Doing so will get you an account string identifier (SID), an authorization
token, and a Twilio phone number from which your messages will be sent.

You should store such information in a .env file rather than in your code (see
Chapter 9).

Create a folder for your project as usual. Create and activate your virtual environ-
ment. Then enter the following command in the Terminal to install the Python
dotenv module, which you’ll use later in your code to retrieve account information
from the .env file:

pip install python-dotenv

Next, create a .env file in your project (no filename extension). Then enter your
Twilio account SID, Twilio authorization token, and Twilio phone number, as
shown in Figure 12-2. You can use different variable names if you like. However,
the variables in your code must match the variable names in your .env file, so be
careful with that. The values shown in the figure are, of course, hypothetical.
Those you must replace with your own Twilio account information.

After you have all of that squared away, you can write your Python script as shown
here. Note that that script uses a couple of hypothetical cellphone numbers to

FIGURE 12-2:
A .env file for a

hypothetical
Twilio account.

https://www.clicksend.com/
https://www.courier.com/
https://www.plivo.com/
https://www.plivo.com/
https://sendgrid.com/
https://sinch.com/
https://telnyx.com/
https://www.vonage.com/

238 PART 3 Automating the Internet

which the sample message will be sent. Replace those with at least one phone
(your own) to test the script and verify you got the text.

import os

from twilio.rest import Client

from twilio.base.exceptions import TwilioRestException

Twilio credentials (set these as environment variables for security)

account_sid = os.environ.get('twilio_account_sid')

auth_token = os.environ.get('twilio_auth_token')

twilio_number = os.environ.get('twilio_phone_number')

Initialize Twilio client.

client = Client(account_sid, auth_token)

Function to send text messages

def send_text_messages(numbers, message, from_number):

 for number in numbers:

 try:

 message = client.messages.create(

 body=message,

 from_=from_number,

 to=number

)

 print(f"Message sent to {number}: SID {message.sid}")

 except TwilioRestException as e:

 print(f"Error sending to {number}: {e}")

def main():

 # List of recipient phone numbers with country code

 phone_numbers = [

 '+12345678901', # Replace with actual phone numbers.
 '+19876543210',
 # Add more numbers as needed.

]

 # Message to send

 message_body = "Hello! This is a test message sent from Python."

 # Check if credentials and phone number are set.

 if not account_sid or not auth_token or not twilio_number:

 print("Error: Invalid or missing account information in .env file.")

CHAPTER 12 Automating Email and Text Messages 239

 else:

 # Send messages.

 send_text_messages(phone_numbers, message_body, twilio_number)

if __name__ == "__main__":

 main()

The function that actually sends text messages is named sent_text_messages,
and it starts with the following line of code:

def send_text_messages(numbers, message, from_number):

As you can see, the function receives as input numbers (the list of phone numbers
to which you’re texting), message (the text message you’re sending), and from_
number (the Twilio number from which you’re sending texts).

Defining your recipient list and message
To specify phone numbers to which you want to send messages, use the phone_
numbers list in the main() function, shown here. Make sure you enclose each
number in quotation marks, include the country code at the start of the number
(+1 for US), and separate numbers with commas.

phone_numbers = [

 '+12345678901', # Replace with actual phone numbers.
 '+19876543210',
 # Add more numbers as needed.

]

Use the message_body variable shown here to set the text of the message you
want to send:

message_body = "Hello! This is a test message sent from Python."

Storing recipient numbers
If you have a large collection of phone numbers to manage, putting them directly
into your code may be unwieldy. Feel free to store them in a database, spread-
sheet, or text file, if that’s easier. Then you can rewrite the script to pull numbers
from that file into the phone_numbers list when you run the script.

240 PART 3 Automating the Internet

I can’t show you how to do that for every app you may use to store phone num-
bers, so I’ll show you how to retrieve them from a text file. Regardless of what
specific app you use to manage numbers, it should be fairly easy to export those
numbers to a text file that looks like this, with each number on its own line
within the file:

+12025550123

+447911123456

+919876543210

+5511987654321

+61412345678

As a working example, let’s assume that file is named sms_numbers.txt and is in
the same folder as the Python code. Here’s a version of the script that gets the list
of phone numbers from that file, with a bit of extra exception handling to deal
with unforeseen problems with the text file.

import os

from twilio.rest import Client

from twilio.base.exceptions import TwilioRestException

Twilio credentials (set these as environment variables for security)

account_sid = os.environ.get('twilio_account_sid')

auth_token = os.environ.get('twilio_auth_token')

twilio_number = os.environ.get('twilio_phone_number')

Initialize Twilio client

client = Client(account_sid, auth_token)

def load_phone_numbers(filename):

 numbers = []

 try:

 with open(filename, 'r') as f:

 for line in f:

 line = line.strip()

 if line:

 numbers.append(line)

 except Exception as e:

 print(f"Error loading phone numbers: {e}")

 return numbers

CHAPTER 12 Automating Email and Text Messages 241

Function to send text messages

def send_text_messages(numbers, message, from_number):

 for number in numbers:

 try:

 sms = client.messages.create(

 body=message,

 from_=from_number,

 to=number

)

 print(f"Message sent to {number}: SID {sms.sid}")

 except TwilioRestException as e:

 print(f"Error sending to {number}: {e}")

def main():

 # Load recipient phone numbers from sms_numbers.txt.

 phone_numbers = load_phone_numbers("sms_numbers.txt")

 # Message to send

 message_body = "Hello! This is a test message sent from Python."

 # Check if credentials and phone number are set.

 if not account_sid or not auth_token or not twilio_number:

 print("Error: Invalid or missing account information in .env file.")

 else:

 # Send messages.

 send_text_messages(phone_numbers, message_body, twilio_number)

if __name__ == "__main__":

 main()

Even if you don’t use Twilio as your service provider for your text messaging,
the basic logic and structure of your Python script should resemble this example.

AI can be a great help in generating such a script. Make sure you tell AI you’re
using Python, which service provider you’re using (SendGrid, Sinch, or something
else), and exactly what you want the script to do. Make sure to create your .env file
with the account information for your own account, and you should be good to go.

CHAPTER 13 Automating Social Media 243

Chapter 13
Automating Social Media

If you regularly use social media to stay in contact with customers or followers,
or to track performance metrics, trends, likes, shares, comments, and such,
Python automation can be your best friend. Allowing Python automation to

handle some of the boring, repetitive, routine grunt work frees up your time for
more creative endeavors and personal involvement in your social media presence.

This chapter offers social media automation techniques you can use with most
social media services, including Facebook, Instagram, LinkedIn, X, and others. As
in previous chapters in this part of the book, much of what you do here will involve
interacting with the application programming interfaces (APIs) offered by social
media sites. You’ll need an API key for any social media platform you intend
to automate.

Acquiring API Keys and Modules
The first step to automating anything on a social media site is to get an API key
from the site itself. Look around the site for information about obtaining an API
key, usually in the site’s Developers section.

IN THIS CHAPTER

	» Posting content automatically

	» Creating content for social media

	» Tracking social media
performance metrics

	» Analyzing trends with Python
automation

244 PART 3 Automating the Internet

For Python, you’ll want to pip install an appropriate module for that site. Here
are some examples of modules:

	» Facebook: python-facebook-api

	» Instagram: Instapy

	» Linked-In: linkedin-api

	» Reddit: praw

	» X: tweepy

If you want to post to multiple sites simultaneously, consider setting up an account
with Hootsuite (www.hootsuite.com). They specialize in multisite social media
marketing and management.

In the following sections, I provide examples of automating different sites in
different ways. But the basic concepts will apply no matter what website you use.

You can always start by asking artificial intelligence (AI) to write some code for
you. Just make sure to start your AI prompt with “Write a Python automation
script to . . .” and then state exactly what you want the script to do and on which
social media site.

Automating Posting
Let’s say you want to post a simple one-line question, every few hours, to a social
media site. These questions can help with social media engagement because
they’re easy to read and easy to answer.

You could start by creating a simple text file of such questions, which I’ll refer to
as questions.txt in this example. Of course, you can have as many or as few lines
in your text file as you like. You can replenish and change it whenever you want.

Here’s a list of five questions, as an example, but you can put hundreds of
questions in your file if you like:

	» What’s the weirdest food combo you’ve ever tried?

	» If you had one superpower, what would it be and why?

	» What’s the last song that got stuck in your head?

	» What’s the most random fact you know?

	» What’s your go-to comfort movie or TV show?

https://www.hootsuite.com/

CHAPTER 13 Automating Social Media 245

As a working example, let’s assume you want to post these questions to your
account at X (https://x.com). You’ll need to log into your account at X, go to the
X Developer Portal, set up a project, and apply for API access by following the
instructions at X. You’ll be given the following credentials:

	» API key

	» API secret key

	» Access token

	» Access token secret

Make sure you set your project to read and write settings while setting up your
project, because that’s necessary if you want to post content to X.

Keep your API key and other credentials secret — you don’t want to risk other
people using your credentials to post to X and possibly violate the terms and con-
ditions of your agreement with X.

Setting up your project
Setting up your social media automation project is similar to setting up any
internet-related automation script, but this one has quite a few moving parts, so
I’ll take it slowly before we get to the actual code. As always, you want to create
your project folder, create a virtual environment, and activate that virtual
environment.

After you have all your credentials to post to your social media site, put that
information in a .env file. For example, if you’re posting to X, create a .env file
inside of your project folder, and fill in your information as shown in Figure 13-1.
Make sure to replace everything to the right of the equal sign (=) with the correct
information for your account.

FIGURE 13-1:
Structure of a
.env file for
posting to X.

https://x.com/

246 PART 3 Automating the Internet

Next, you’ll need to pip install three modules that aren’t part of the standard
Python library: python-dotenv to pull data from your .env file, tweepy to sim-
plify access to X, and schedule to simplify posting based on a schedule, such as
every four hours. Enter the following command in the Terminal to ensure those
modules are installed before running your script:

pip install tweepy schedule python-dotenv

With all those pieces in place, here’s the entire script, which I’ve named
post_to_x.py:

post_to_x.py

pip install tweepy schedule python-dotenv

import tweepy

import schedule

import time

import os

from dotenv import load_dotenv

from datetime import datetime

Load environment variables from .env file.

load_dotenv()

Retrieve X API credentials from .env.

consumer_key = os.getenv("X_CONSUMER_KEY")

consumer_secret = os.getenv("X_CONSUMER_SECRET")

access_token = os.getenv("X_ACCESS_TOKEN")

access_token_secret = os.getenv("X_ACCESS_TOKEN_SECRET")

Validate environment variables.

if not all([consumer_key, consumer_secret, access_token, access_token_secret]):

 print("Missing one or more environment variables in .env file")

 raise ValueError("The .env file is missing some required credentials.")

Initialize Tweepy client.

try:

 client = tweepy.Client(

 consumer_key=consumer_key,

 consumer_secret=consumer_secret,

 access_token=access_token,

 access_token_secret=access_token_secret

)

CHAPTER 13 Automating Social Media 247

 print("Tweepy client initialized successfully")

except Exception as e:

 print(f"Failed to initialize Tweepy client: {str(e)}")

 raise

def process_file(filename):

 """

 Reads the first line from the specified file, removes it from the file,

 and returns the question along with the count of remaining questions.

 If the file is missing or empty, returns (None, 0).

 """

 try:

 with open(filename, "r") as file:

 lines = file.readlines()

 except FileNotFoundError:

 print(f"Error: {filename} not found.")

 return None, 0

 if not lines:

 print(f"Warning: {filename} is empty before attempting to post.")

 return None, 0

 # Retrieve the first line and remove it from the file.

 question = lines[0].strip()

 remaining_questions = len(lines) - 1

 with open(filename, "w") as file:

 file.writelines(lines[1:])

 return question, remaining_questions

Function to post to X using the question text from the specified file

def post_to_x(filename):

 question, remaining = process_file(filename)

 if question is None:

 print("No question available for posting.")

 return

 try:

 response = client.create_tweet(text=question)

 print(f"Successfully posted to X: {question}")

 print(f"Posted: {question}")

248 PART 3 Automating the Internet

 except tweepy.TweepyException as e:

 print(f"Error posting to X: {str(e)}")

 if "429" in str(e):

 print("Warning: Rate limit reached. Waiting for reset...")

 elif "403" in str(e):

 print("Error: Forbidden. Check app permissions or credentials.")

 elif "401" in str(e):

 print("Error: Unauthorized. Verify API credentials.")

 return

 print(f"Number of questions left in {filename}: {remaining}")

Main loop to run the scheduler

def main():

 # Define the filename of the file containing questions.

 content_filename = "questions.txt"

 # Define how many hours between each post.

 interval_hours = 4

 # Schedule the post every interval_hours hours.

 schedule.every(interval_hours).hours.do(lambda: post_to_x(content_filename))

 print(f"Scheduled posts every {interval_hours} hour(s) using file:

{content_filename}")

 print("Starting X posting script... Check terminal for details.")

 while True:

 try:

 schedule.run_pending()

 time.sleep(60) # Check every minute

 except Exception as e:

 print(f"Error in scheduler loop: {str(e)}")

 time.sleep(300) # Wait 5 minutes before retrying on error.

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 print("Script terminated by user")

 except Exception as e:

 print(f"Unexpected error: {str(e)}")

That’s a lot of code, but as always, much of it is exception handling, to prevent the
script from crashing due to unforeseen problems, like an incomplete .env file or
questions.txt file.

CHAPTER 13 Automating Social Media 249

Making the script your own
As written, the post_to_x.py script posts one line of text at a time from a file
named questions.txt. Make sure that file is in the same folder as your script and
that each line contains one question. To avoid duplication, the script removes the
question from the file right after posting. Keep an eye on that file and replenish it
with new questions from time to time to keep your content fresh.

If you prefer to name your file something other than questions.txt, make sure
you change the following line of code in the main() function to your cho-
sen filename:

content_filename = "questions.txt"

As written, the script posts once every four hours, as long as the script is running
and there are questions in the questions.txt file.

Posting too quickly can cause X’s bot police to disable your account. Be sure to
limit your script to posting 10 or 15 posts an hour.

Creating Content for Your Posts
If you’re having trouble coming up with things to write about for your social
media, consider the fact that you can always use AI to generate posts for you. You
can generate posts on any topic, using any AI chatbot, and store them in a file
similar to questions.txt to post them automatically using the same code. There’s
really no need to write a Python script to generate such content — it’s probably
faster and easier to just do it interactively.

For example, browse to ChatGPT (https://chatgpt.com), Grok (https://x.ai),
or the website of any other chatbot. Type your prompt in a way that specifies what
you want your posts to be about and how many posts you want. Use wording like
that shown in Figure 13-2 so the text is easily copied to a text file.

FIGURE 13-2:
Prompting

ChatGPT to
write social

media posts.

https://chatgpt.com/
https://x.ai/

250 PART 3 Automating the Internet

After all of your posts have been generated, click the Copy button to copy them all.
Typically, the Copy icon looks like two sheets of paper. It may be at the bottom of
the generated output, as shown in Figure 13-3, or at the top, depending on which
AI chatbot you use to generate your posts.

If you already have your automatic posting script written, like the auto_post.py
script from the previous section, open that project in your code editor (VS Code in
our example). Create a new text file in the same folder as the script itself. Name it
anything you like. I’ll name this one content.txt. Paste in the posts you copied
from your chatbot. Then close and save the file.

Finally, just make sure your auto-posting script knows to use that file to find your
posts. In the post_to_x.py script from the previous section, look for this one
line of code:

content_filename = "questions.txt"

Now change it to reflect the name of the file you just created. For example, if you
named it content.txt, change that line to:

content_filename = "content.txt"

FIGURE 13-3:
The copy icon at

the bottom of
ChatGPT output.

CHAPTER 13 Automating Social Media 251

Tracking Performance Metrics
Using Python automation to track performance metrics helps individuals, busi-
nesses, and marketers optimize their social media strategy. Automating perfor-
mance metrics with Python saves time and eliminates boring repetitive tasks by
eliminating the need for manual tracking of data such as user engagement, growth
trends, or content performance. Python enables you to collect data daily, hourly,
or at any interval you like.

For a working example, I’ll show you a script that can collect metrics from Insta-
gram. As with other internet-related scripts, this will involve using an API with
your current social media account. The same basic logic can be applied to any
social media site. Feel free to use AI to adapt the code to whatever sites you
intend to use.

Getting Instagram API access
To best automate Instagram, you should set up a business account. A business
account gives you access to the Instagram Graph API, which provides richer data
for performance metrics.

If you already have a personal Instagram account, you can convert it to a business
account for free. Doing so provides access to Instagram Insights and other perfor-
mance metrics that aren’t available with a personal account.

If you need help converting your account, log into Instagram and use Meta’s help
resources or Meta AI to find step-by-step instructions.

Next, you’ll need an API key. Go to the Meta for Developers website (https://
developers.facebook.com) and log in with your Facebook credentials. Create a
developer account; then go to the Developer Dashboard and register a new app,
selecting Instagram as the product. Choose the Instagram Graph API as the API
your app will use.

After you’ve completed all these steps, you’ll receive two keys: an Instagram
Business Account ID and an Access Token. Save them in a safe place and keep
them private. You’ll need them for your Python script (see the next section).

Setting up your script
Create your project folder and create and activate a virtual environment. The script
I show you here uses three modules that aren’t part of the Python standard library.

https://developers.facebook.com/
https://developers.facebook.com/

252 PART 3 Automating the Internet

So, before you get started writing the script, make sure to enter this command at
the command prompt:

pip install requests schedule python-dotenv

Next, create a .env file in your project folder to store private key information.
Then give your business account ID and access tokens each a variable name and
assign them the values you got from Instagram. Figure 13-4 shows an example,
but make sure you replace the text after the equal sign (=) on each line with your
actual key information from Instagram.

Here’s the entire Python automation script for accessing Instagram perfor-
mance metrics:

instagram_metrics.py

pip install requests schedule python-dotenv

import requests

import os

import schedule

import time

from dotenv import load_dotenv

from datetime import datetime

Load environment variables from .env file.

load_dotenv()

Retrieve Instagram API credentials from .env.

INSTAGRAM_BUSINESS_ACCOUNT_ID = os.getenv("INSTAGRAM_BUSINESS_ACCOUNT_ID")

ACCESS_TOKEN = os.getenv("ACCESS_TOKEN")

Validate required environment variables.

if not INSTAGRAM_BUSINESS_ACCOUNT_ID or not ACCESS_TOKEN:

 print("Missing account ID or access token in .env file.")

 exit(1)

FIGURE 13-4:
Setting up a .env
file for Instagram.

CHAPTER 13 Automating Social Media 253

def fetch_instagram_metrics(metrics):

 # Fetch daily performance metrics from the Instagram business account.

 url = f"https://graph.facebook.com/v14.0/{INSTAGRAM_BUSINESS_ACCOUNT_

ID}/insights"

 params = {

 "metric": metrics,

 "period": "day",

 "access_token": ACCESS_TOKEN

 }

 try:

 response = requests.get(url, params=params)

 response.raise_for_status()

 data = response.json()

 print(f"\nMetrics for {datetime.now().strftime('%Y-%m-%d')}:")

 for item in data.get("data", []):

 metric_name = item.get("name")

 values = item.get("values", [])

 if values:

 # Assuming the most recent value is of interest

 value = values[0].get("value")

 print(f"{metric_name}: {value}")

 else:

 print(f"{metric_name}: No data available.")

 except Exception as e:

 print(f"Error fetching metrics: {str(e)}")

def main():

 print("Starting Instagram metrics fetching script...")

 # Define the metrics variable and the scheduled time.

 metrics = "impressions,reach,profile_views"

 # Time of day to run script (00:00 is midnight)

 schedule_time = "00:00"

 # Fetch metrics immediately when the script starts.

 fetch_instagram_metrics(metrics)

 # Schedule to run the metrics fetch every day at the user-defined time with

the metrics parameter.

 schedule.every().day.at(schedule_time).do(fetch_instagram_metrics, metrics)

 print(f"Metrics fetching scheduled to run daily at {schedule_time}.")

254 PART 3 Automating the Internet

 while True:

 schedule.run_pending()

 time.sleep(60) # Wait one minute between checks

if __name__ == "__main__":

 try:

 main()

 except KeyboardInterrupt:

 print("Script terminated by user.")

 except Exception as e:

 print(f"Unexpected error: {str(e)}")

The script will gather performance metrics as soon as you run it. If you leave it
running, it will grab metrics every day at midnight. You can change which metrics
it downloads, and at what time, by modifying the code as discussed next.

Defining your metrics and timeframe
You can personalize the Instagram performance metrics script to your own needs
via two variables inside the main() function:

Define the metrics variable and the scheduled time.

metrics = "impressions,reach,profile_views"

Time of day to run script (00:00 is midnight)

schedule_time = "00:00"

The metrics variable defines the following values from Instagram Insights:

	» Impressions: The total number of times your posts, Stories, or Reels have
been viewed

	» Reach: The number of unique accounts that have seen your posts, Stories, or
Reels at least once

	» Profile views: The number of times your Instagram profile has been viewed

Other available metrics are documented at the Meta for Developers site at https://
developers.facebook.com. (Search the site for Instagram Insights Metrics.)

When you run the script, the output will look something like this in the Terminal:

Metrics for 2026-06-08:

impressions: 1234

reach: 5678

profile_views: 42

https://developers.facebook.com
https://developers.facebook.com

CHAPTER 13 Automating Social Media 255

The numbers represent the overall daily activity for your Instagram account on
the day that you ran the script. For that reason, having the script check automati-
cally at midnight is your best bet for getting the most accurate one-day results.

If you prefer to run the script at a time other than midnight, change the scheduled
time from "00:00" to something else. For example, to run the script at 6:00 AM,
change schedule_time = "00:00" to scheduled_time = "06:00". To run it at
noon each day, change it to scheduled_time = "12:00".

Analyzing Trends
Analyzing trends over time is a good way to keep your social media content rele-
vant to people’s current interests. Google searches provide a quick and easy way
to look at trends for various keywords. Python can make quick work of that.

Unlike other scripts in this chapter, you don’t need to get access to any APIs
(hooray!), but you will need to install some modules. Create your project folder,
create and activate your virtual environment, and then run the following com-
mand in the Terminal to install the required modules:

pip install pytrends pandas matplotlib

Here’s the entire script for analyzing trends using Python:

analyze_trends.py

pip install pytrends pandas matplotlib

from pytrends.request import TrendReq

import pandas as pd

import matplotlib.pyplot as plt

def analyze_trends(keyword_list, timeframe):

 # Connect to Google Trends.

 pytrends = TrendReq(hl='en-US', tz=360)

 # Build payload with the provided keywords and timeframe.

 pytrends.build_payload(keyword_list, cat=0, timeframe=timeframe,

geo='', gprop='')

256 PART 3 Automating the Internet

 # Retrieve interest over time data.

 interest_over_time_df = pytrends.interest_over_time()

 if not interest_over_time_df.empty:

 print("See the pop-up chart for results")

 # Remove the "isPartial" column if present.

 if 'isPartial' in interest_over_time_df.columns:

 interest_over_time_df = interest_over_time_df.drop(columns=['

isPartial'])

 # Adjust granularity:

 # If the timeframe indicates a long period, aggregate to monthly data.

 if 'y' in timeframe:

 data_to_plot = interest_over_time_df.resample('M').mean()

 else:

 data_to_plot = interest_over_time_df

 data_to_plot.plot()

 plt.title("Google Trends Interest Over Time")

 plt.xlabel("Date")

 plt.ylabel("Interest")

 plt.legend(loc='upper left')

 plt.tight_layout()

 plt.show()

 else:

 print("No trend data available.")

def main():

 # Define the list of keywords and the timeframe.

 keyword_list = ['AI', 'Python', 'JavaScript']

 # Set the timeframe here (change as desired)

 # timeframe = 'now 7-d' # One-week timeframe

 # timeframe = 'today 12-m' # For the last 12 months

 timeframe = 'today 5-y' # For the last 5 years

 analyze_trends(keyword_list, timeframe)

if __name__ == "__main__":

 main()

CHAPTER 13 Automating Social Media 257

Viewing the trends
When you run the script as shown, the output will be the trends for the specified
keywords (AI, Python, and JavaScript) over the last five years. That will pop up
into a chart on your screen that looks something like Figure 13-5. The matplotlib
module displays the chart.

If you run the script while the chart is still open on the screen, nothing will seem
to happen. Close the current chart shown onscreen before running the script to
prevent that.

Setting your own keywords and timeframe
To adjust the script to your own keywords of interest and timeframe, set
values for the keyword_list and timeframe variables in the main() function
as follows:

keyword_list = ['AI', 'Python', 'JavaScript']

Make sure that you put each keyword you want to analyze in quotation marks, and
separate them with commas, as shown in the example.

FIGURE 13-5:
Sample output

from analyze_
trends.py.

258 PART 3 Automating the Internet

Defining your timeframe can be a little tricky, because you have to use syntax
specified by the pytrends module. The current script provides examples using a
week, a year, and the last five years, as follows:

Set the timeframe here (change as desired).

timeframe = 'now 7-d' # One-week timeframe

timeframe = 'today 12-m' # For the last 12 months

timeframe = 'today 5-y' # For the last 5 years

You can use any of those timeframes by un-commenting the one you want and
commenting out the other two. For more details and options, see the pytrends
README on GitHub at https://github.com/GeneralMills/pytrends.

https://github.com/GeneralMills/pytrends

4Automating
More Advanced
Stuff

IN THIS PART . . .

Schedule tasks with the schedule module.

Schedule tasks with APScheduler.

Integrate with artificial intelligence.

CHAPTER 14 Scheduling Tasks 261

Chapter 14
Scheduling Tasks

Python is well-suited to scheduling tasks to run at specific dates and times,
as well as at regular intervals. You can schedule system tasks like backups
and logging. You can also schedule internet-related tasks like web scraping,

email, and social media posting.

In this chapter, you learn about two libraries that are particularly well-suited to
scheduling: schedule and APScheduler. First, I show you the features of each. Then
I provide specific examples of how to use them to schedule Python automa-
tion tasks.

Using the Schedule Module
A popular module used for scheduling is aptly named schedule. The schedule
module isn’t part of the Python standard library. So, if you intend to use it in a
script, make sure to create and activate your virtual environment and enter this
command at the command prompt in the Terminal:

pip install schedule

You can use the schedule library to run tasks at specific times or at regular inter-
vals. A simple way to get started is to write some simple scripts that just print
some feedback in the Terminal, on schedule, so you know that your code works.

IN THIS CHAPTER

	» Automating with the schedule and
APScheduler modules

	» Running scripts as subprocesses
and imports

262 PART 4 Automating More Advanced Stuff

Here’s a simple script that just displays some feedback in the Terminal every ten
seconds, to show you the basic syntax and structure of such a script:

basic_schedule.py

pip install schedule

import schedule

import time

Function to be scheduled

def job():

 print("Task executed! Press Ctrl+C in Terminal to stop the script.")

Schedule the job every ten seconds.

schedule.every(10).seconds.do(job)

Main loop to run scheduled tasks with keyboard interrupt handling

try:

 while True:

 schedule.run_pending()

 time.sleep(1) # Prevent high CPU usage.

except KeyboardInterrupt:

 print("\nScript terminated by user.")

The first function in the script, job(), displays some text on the screen when
called. For testing and feedback purposes. When you run the script, you’ll see that
message appear every ten seconds. This is the line of code that sets up the sched-
uler to call the job() function every ten seconds:

schedule.every(10).seconds.do(job)

Notice that when I’m using the schedule module, I refer to the function as
job without the parentheses — in other words, job rather than job(). It may
seem counterintuitive, because we usually call functions with those parentheses
in the names. But in this syntax, I’m not calling on the function to return a value
immediately — I’m simply telling the scheduler the name of the function to call
when it starts running.

Below the line that defines the scheduled interval is a peculiar while True loop,
inside an exception handler. You may be thinking that because True is always
true, that loop will run forever. You’re correct, and that’s what we want in this
case. Without the loop, the script would just end before the first ten seconds were
up, and the script would do nothing. I explain why next.

CHAPTER 14 Scheduling Tasks 263

Understanding how the schedule
module works
The line schedule.every(10).seconds.do(job) never actually runs the job.
Instead, every ten seconds, it updates the scheduled job list (or queue as it’s some-
time called) to say, “Please run the job when you get a chance.” That prevents the
scheduled task from trying to run when the central processing unit (CPU) is busy
doing something else.

To actually run scheduled tasks that are ready to go, use the following line of code:

schedule.run_pending()

So, it really takes two lines of code to run scheduled tasks: one to set up the sched-
ule, which simply lets the computer know that the task is to be run at its earliest
convenience, and the second to actually run tasks that are waiting in the queue.

Now let’s look at the entire loop for running scheduled tasks, along with the
exception handler:

Main loop to run scheduled tasks with keyboard interrupt handling

try:

 while True:

 schedule.run_pending()

 time.sleep(1) # Prevent high CPU usage

except KeyboardInterrupt:

 print("\nScript terminated by user.")

Basically, the while True loop keeps the script running “forever.” That loop
repeats once per second, due to time.sleep(1). That one second keeps the CPU
freed up to do other tasks required by apps you may be using at the time. So, the
scheduler runs “in the background,” so to speak, occasionally taking a peek into
the queue to see if any scheduled tasks need to run. But in the meantime, you can
be doing other things with the computer because the scheduler isn’t hogging all
the CPU time.

Of course, in real life, you probably don’t want to really run the script “forever.”
You may want to stop it to work with the code. That’s where the try...except
comes in. To stop the script, you can simply press Ctrl+C.

Make sure you click inside the Terminal where the script in running inside VS
Code before pressing Ctrl+C. The script won’t detect keystrokes outside that
Terminal window.

264 PART 4 Automating More Advanced Stuff

With that in mind, look at the code again. On the one hand, schedule.every(10).
seconds.do(job) is adding the task to run the job every ten seconds to a queue.
But it isn’t actually running the task.

The while True loop is constantly running, but it repeats only once every second
(not thousands of times a second). During that one second, the computer can be
handling other demands from other apps. When the loop repeats and schedule.
run_pending() is executed, then any scheduled tasks waiting in the queue can be
executed (one at a time if there are several) without “crashing into” each other
and overwhelming the CPU.

Thats how it all works, technically, behind the scenes. From your standpoint, as a
user, when you run the script, nothing will happen for the first ten seconds. But
after that, you’ll see the following text repeated in the Terminal every ten sec-
onds, indicating that the job() function is being executed on schedule:

Task executed! Press Ctrl+C in Terminal to stop the script.

As long as you see the message appear every ten seconds, you know the scheduler
is working and your code is working. Of course, in real life, you’ll probably want
to do more than just display some text in the Terminal.

Scheduling tasks for intervals
In the first script, earlier, I had you schedule a task to run every ten seconds, just
for easy testing purposes. Of course, you can use intervals other than seconds.
Here’s an example of scheduling a task to run every ten minutes:

Schedule a task every ten minutes.

schedule.every(10).minutes.do(job)

Here’s some code to run a task every two hours:

Schedule a task every two hours

schedule.every(2).hours.do(job)

You can also use .days and .weeks to schedule tasks. Here’s a line of code to run
a task every other day:

Schedule a task every two days.

schedule.every(2).days.do(job)

CHAPTER 14 Scheduling Tasks 265

Here’s an example of running a task every two weeks:

Schedule a task every two weeks.

schedule.every(2).weeks.do(job)

You can also schedule for specific days of the week and month, and specific times
of day. For example, here’s code to run a task every day at 8:00 AM:

Schedule a task daily at a specific time (for example, 8:00 AM).

schedule.every().day.at("08:00").do(job)

Here’s an example of scheduling at 9:30 AM every weekday:

Schedule a task every weekday at a specific time (for example, Monday through

Friday at 9:30 AM).

schedule.every().monday.at("09:30").do(job)

schedule.every().tuesday.at("09:30").do(job)

schedule.every().wednesday.at("09:30").do(job)

schedule.every().thursday.at("09:30").do(job)

schedule.every().friday.at("09:30").do(job)

You have a lot of leeway in how often you want to run your scheduled task.
However, the schedule module isn’t the only game in town for scheduling tasks.
In the next section, I introduce you to the APSchedule module, which can also
schedule tasks and has a few extra tricks up its sleeve in terms of specifying
schedules.

Using the APScheduler Module
The schedule module is a popular and relatively easy way to schedule tasks with
Python. But out in the corporate world, many people use APScheduler (which
stands for Advanced Python Scheduler). It works similarly to schedule but offers
more flexibility for specifying dates and times for running tasks. APScheduler
also lets you avoid the awkward while True loop in the previous script.

APScheduler is not part of the Python standard library. So, if you intend to use it
in a script, make sure to pip install APScheduler first.

266 PART 4 Automating More Advanced Stuff

Here’s a script much like the first example — it calls a function named
job() every ten seconds, but it uses APScheduler rather than the simple
schedule module:

basic_apscheduler.py

pip install apscheduler

from apscheduler.schedulers.blocking import BlockingScheduler

def job():

 print("Task executed! Press Ctrl+C in Terminal to stop the script.")

scheduler = BlockingScheduler()

scheduler.add_job(job, 'interval', seconds=10)

if __name__ == '__main__':

 try:

 scheduler.start()

 except (KeyboardInterrupt, SystemExit):

 print("Scheduler stopped")

 scheduler.shutdown()

This script uses from apscheduler.schedulers.blocking import Blocking-
Scheduler because APScheduler is actually a collection of modules offering many
capabilities. For basic scheduling, you need only the BlockingScheduler, so
importing just that one module is more efficient.

Let’s look at the script in detail. The function named job() simply displays some
text on the screen, so we can verify the script is working when we test it. Then
come these two lines:

scheduler = BlockingScheduler()

scheduler.add_job(job, 'interval', seconds=10)

The first line simply executes BlockingScheduler to create an object named
scheduler. Throughout the rest of the code, the name scheduler refers to that
instance of BlockingScheduler. After it’s defined, you can schedule jobs to run
using syntax like the following:

scheduler.add_job(job, 'interval', seconds=10)

In that line of code, job refers to the job() function, and 'interval' specifies
that we want to schedule the job to run at regular intervals. As you probably
guessed, seconds=10 says to run the job every ten seconds. That line of code
doesn’t actually get the process going — it just defines what the schedule will be.

CHAPTER 14 Scheduling Tasks 267

You can add as many scheduled tasks and intervals as you like using that .add_
job() method.

With the schedule module, we had to add a while True loop to prevent the script
from exiting immediately, but BlockingScheduler doesn’t work that way. Instead
you use the .start() method to get it going and keep the script from ending. But of
course, you don’t really want the script to run “forever.” So, you still need some
way to stop the scheduler when necessary. That’s what the following lines are for:

try:

 scheduler.start()

except (KeyboardInterrupt, SystemExit):

 print("Scheduler stopped")

 scheduler.shutdown()

Those lines replace the while True loop, allowing you to stop the script by
blocking inside the Terminal in VS Code and pressing Ctrl+C. The scheduler.
shutdown() line stops the scheduler, cleans up any resources the scheduler
was using, and allows the script to exit gracefully.

In the sample script, except (KeyboardInterrupt, SystemExit) ensures that
the scheduler shuts down when you press Ctrl+C or if the script stops executing
for any other reason (such as a bug in your Python code).

Using APScheduler with intervals
In the example script, I use 'interval' as a keyword for indicating a schedule based
on time intervals. In this section, I show you examples using different timeframes
with the interval keyword.

Here’s an example of running a job every five minutes:

scheduler.add_job(job, 'interval', minutes=5)

Here’s an example of running a job every two hours:

scheduler.add_job(my_job, 'interval', hours=2)

Here’s an example of running a job every three days:

scheduler.add_job(my_job, 'interval', days=3)

268 PART 4 Automating More Advanced Stuff

Here’s one for running a job once a week:

scheduler.add_job(my_job, 'interval', weeks=1)

Here’s one for running a job every two weeks:

scheduler.add_job(job_two_weeks, 'interval', weeks=2)

Using APScheduler with dates and times
One big advantage APScheduler has over schedule is the ability to specify dates
and times for running tasks, rather than just intervals. To do this, use the cron
keyword in place of interval. The syntax is as follows:

scheduler.add_job(job, 'cron', [year=], [month=], [day=], [week=], [day_of_

week=], [hour=], [minute=], [second=], [start_date=], [end_date=],

[timezone=], [jitter=], **kwargs)

You can omit any parameters in square brackets that you don’t need. Examples are
probably the easiest way to understand how to phrase things, so I’ll show you a
bunch of them next.

Here’s a line of code to run a job every day at 8:00 AM:

scheduler.add_job(job, 'cron', hour=8, minute=0)

If you want to run a job several times an hour, you can use */ with minute= to
specify an interval. For example, here’s a line of code that will run a job every
15 minutes:

scheduler.add_job(job, 'cron', minute='*/15')

Here’s one that runs a job once a week, every Wednesday at noon:

scheduler.add_job(my_job, 'cron', day_of_week='wed', hour=12)

When you’re using the day_of_week parameter, you can use either numbers
(0 through 6, where 0 is Sunday), or day name abbreviations in quotation
marks ('sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat') to specify days. Use
commas to specify multiple values.

CHAPTER 14 Scheduling Tasks 269

Here’s a line of code to run a job every Monday, Wednesday, and Friday at noon:

scheduler.add_job(job, 'cron', day_of_week='mon,wed,fri', hour=12)

You can describe the days of the week as numbers, if you prefer, like this:

scheduler.add_job(job, 'cron', day_of_week='1,3,5', hour=12)

This next line of code runs a task once a month at midnight on the first day of
each month:

scheduler.add_job(job, 'cron', day=1, hour=0, minute=0)

When using the day= parameter, specify the day of the month as a number,
between 1 and 31.

APScheduler really gives you a lot of flexibility for scheduling. Here’s an
example where you run a task on the 1st and 15th of every month at midnight:

scheduler.add_job(job, 'cron', day='1,15', hour=0, minute=0)

With the day= parameter, you can use 'last' to specify the last day of each
month. Here’s an example to run a task at 11:59 PM on the last day of every month:

scheduler.add_job(job, 'cron', day='last', hour=23, minute=59)

To run a task on the first and last days of the month, use 1 for the first day and
'last' for the last day, like this:

scheduler.add_job(job, 'cron', day='1,last', hour=12)

If you want to run something hourly, set the hour parameter to '*'. For example,
the following code runs a task at noon every Saturday and Sunday:

scheduler.add_job(job, 'cron', day_of_week='sat,sun', hour='*')

Here’s a line of code that runs a task every 30 seconds on weekdays during busi-
ness hours (8 AM to 5 PM).

scheduler.add_job(job, 'cron', day_of_week='mon-fri', hour='8-17',

second='*/30')

There’s almost no limit to how you can schedule things with APScheduler, which
is a great thing for automation.

270 PART 4 Automating More Advanced Stuff

If you’re having a hard time specifying your schedule, consider asking artificial
intelligence (AI) for help. Phrase your prompt as “Using Python APScheduler, how
can I specify . . .” and then express the schedule you want in plain language.

So far, I’ve shown you examples of calling a single simple function according to a
schedule. That same strategy works for calling multiple functions on different
schedules. Again, I’ll use very simple functions to focus on the scheduling code. In
the following code, you can see how three different scheduler.add_job() state-
ments allow the script to execute code in the three different functions on three
different schedules:

multi_functions.py

pip install apschedule

from apscheduler.schedulers.blocking import BlockingScheduler

def job1():

 print("job1 - Press Ctrl+C in Terminal to stop")

def job2():

 print("job2")

def job3():

 print("job3")

if __name__ == "__main__":

 scheduler = BlockingScheduler()

 # Schedule job1 to run every ten seconds.

 scheduler.add_job(job1, 'interval', seconds=10)

 # Schedule job2 to run every 30 seconds.

 scheduler.add_job(job2, 'interval', seconds=30)

 # Schedule job3 to run every one minute.

 scheduler.add_job(job3, 'interval', minutes=1)

 try:

 # Keep the script running.

 scheduler.start()

 except (KeyboardInterrupt, SystemExit):

 scheduler.shutdown()

CHAPTER 14 Scheduling Tasks 271

Automating Python Scripts
If you’re running large Python scripts on a schedule, the thought of putting all the
code from each script into a function may concern you. If you prefer to keep each
task in its own script (its own .py file), you can still use the same techniques as I
outline earlier to set up your schedule. Then just have each function run an exter-
nal script.

To illustrate how it works, let’s assume I have three scripts named
script01.py, script02.py, and script03.py. Of course, you have as few, or
as many, scripts as you like. Exactly what each script does isn’t important. All
that matters for this example is that each script does something that’s useful
for you when you run it.

There are two ways to run external scripts on a schedule. You can use the subpro-
cess module, which I show you first, or you can import the scripts, which I show
you later in this section.

Running scripts as subprocesses
The subprocess module, which is part of the Python standard library, is a great
tool for running code outside of a Python script. In addition to external .py
files, subprocess can run shell scripts (.bat, .cmd, and .sh files) and executables
(.exe in Windows).

The subprocess module can run virtually any external code, though on a Mac
you may need to grant permission. Refer to the subprocess documentation at
https://docs.python.org/3/library/subprocess.html for details. Or ask any
AI for help with the specific file type you intend to run with subprocess.

The easiest way to run multiple scripts is still to create a function for each job.
But instead of having the function contain all the code to perform the task, the
function just calls the script by its filename (and path, if the script isn’t in
the same folder as the scheduler script).

Here’s an example where the scheduler runs three scripts named script01.py,
script02.py, and script03.py, each on its own script, using code similar to the
last example in the previous section.

multi_scripts.py

pip install apschedule

from apscheduler.schedulers.blocking import BlockingScheduler

import subprocess

https://docs.python.org/3/library/subprocess.html

272 PART 4 Automating More Advanced Stuff

def job1():

 run_external_script('script01.py')

def job2():

 run_external_script('script02.py')

def job3():

 run_external_script('script03.py')

def run_external_script(script_path):

 try:

 # Run the external script.

 result = subprocess.run(

 ["python", script_path], # Command as a list

 capture_output=True, # Capture stdout and stderr.

 text=True, # Return strings, not bytes.

 check=True # Raise error on nonzero exit code.

)

 # Show script output.

 print("Output:", result.stdout)

 # print("Error (if any):", result.stderr)

 # print("Return code:", result.returncode)

 except subprocess.CalledProcessError as e:

 print(f"Error running script: {e}")

 print("Error output:", e.stderr)

 except FileNotFoundError:

 print(f"Script or Python executable not found: {script_path}")

if __name__ == "__main__":

 scheduler = BlockingScheduler()

 # Schedule job1 to run every ten seconds.

 scheduler.add_job(job1, 'interval', seconds=10)

 # Schedule job2 to run every 30 seconds.

 scheduler.add_job(job2, 'interval', seconds=30)

 # Schedule job3 to run every one minute.

 scheduler.add_job(job3, 'interval', minutes=1)

 try:

 # Keep the script running.

 scheduler.start()

 except (KeyboardInterrupt, SystemExit):

 scheduler.shutdown()

CHAPTER 14 Scheduling Tasks 273

Let’s take a look at some specifics in the code. The import subprocess line near
the top imports the subprocess module. That’s part of the Python standard
library, so you don’t need to pip install it. The subprocess module allows you
to run external code.

The script still contains three functions named job1, job2, and job3, but as you
can see, each of them uses this syntax to run one of the external scripts —
script01.py, script02.py, and script03.py — using syntax like this:

run_external_script('script01.py')

The sample code assumes the external scripts are in the same folder as the
scheduling script. If yours are in separate folders, make sure you include
the path to the external folder in front of the filename.

That run_external_script() name refers to the function by the same name
in the code:

def run_external_script(script_path):

 try:

 # Run the external script.

 result = subprocess.run(

 ["python", script_path], # Command as a list

 capture_output=True, # Capture stdout and stderr.

 text=True, # Return strings, not bytes.

 check=True # Raise error on nonzero exit code.

)

 # Show script output.

 print("Output:", result.stdout)

 # print("Error (if any):", result.stderr)

 # print("Return code:", result.returncode)

 except subprocess.CalledProcessError as e:

 print(f"Error running script: {e}")

 print("Error output:", e.stderr)

 except FileNotFoundError:

 print(f"Script or Python executable not found: {script_path}")

I’ve included exception handling in that script to gracefully handle any unfore-
seen errors. This next code is the part that actually runs the external script:

result = subprocess.run(

 ["python", script_path], # Command as a list

 capture_output=True, # Capture stdout and stderr.

274 PART 4 Automating More Advanced Stuff

 text=True, # Return strings, not bytes.

 check=True # Raise error on nonzero exit code.

)

The line that reads ["python", script_path] basically says to use Python to
run whatever script name was passed into the function (script_path). The line
that reads capture_output=True captures any output that the script puts out
through print() commands or error messages (but it doesn’t display that output
immediately). The text=True line ensures that any script output is stored as
simple strings and not bytes. The check=True line prevents any errors in the
script from stopping the scheduler script, so the error can be handled by
the scheduler script.

Notice how the preceding function starts with result=. Any output from that func-
tion is stored in the result object. If you need to see any of that output, you can use
standard print() statements with reference to the data you want.

Next, I’m only showing stdout (standard output, from print() statements). But
you can uncomment the other print() statements below to see any error
messages (stderr) and an exit code (returncode), where 0 is a normal exit:

print("Output:", result.stdout)

print("Error (if any):", result.stderr)

print("Return code:", result.returncode)

Most of the rest of the code is just the scheduling code and some extra exception
handling for running external scripts.

Running scripts as imports
In the interest of being complete, I’ll show you another way to run external
scripts from Python, using the import statement. Personally, I recommend that
you use subprocess from the previous example, where you can capture output
from each script, and even run non-Python scripts and executables.

The subprocess module is safer than import, because it spawns a new operating
system process for each external script, so there’s no chance of collision between
variables and such. It more closely resembles how things work when you manu-
ally start each script yourself.

To use the import statement, each script you want to run should have a main()
function that kicks off the script execution. At the bottom, include an if __name__

CHAPTER 14 Scheduling Tasks 275

== "__main__" block to prevent the script from running when you import it rather
than run it. Here’s an example:

script01.py

Super-simple example to test scheduling

def main():

 print("Script01.py, press Ctrl+C in Terminal to stop")

if __name__ == "__main__":

 main()

Next I’ll show you an APScheduler example similar to others you’ve seen in this
chapter. But this one actually imports the Python scripts to run. Then it executes
each one using scriptname.main() (where scriptname is the same as the file-
name without the .py extension):

multi_imports.py

pip install apschedule

from apscheduler.schedulers.blocking import BlockingScheduler

Import script01.py through script03.py.

import script01, script02, script03

def job1():

 script01.main()

def job2():

 script02.main()

def job3():

 script03.main()

if __name__ == "__main__":

 scheduler = BlockingScheduler()

 # Schedule job1 to run every ten seconds.

 scheduler.add_job(job1, 'interval', seconds=10)

 # Schedule job2 to run every 30 seconds.

 scheduler.add_job(job2, 'interval', seconds=30)

 # Schedule job3 to run every one minute.

 scheduler.add_job(job3, 'interval', minutes=1)

276 PART 4 Automating More Advanced Stuff

 try:

 # Keep the script running.

 scheduler.start()

 except (KeyboardInterrupt, SystemExit):

 scheduler.shutdown()

The scheduling code in this example is identical to the other examples. The
code is simpler in that you don’t need the run_external_script() function and
other complications of the previous example. However, you may find using
subprocess and run_external_script() to be easier, in the long run, if you’re
dealing with complex processes.

Yet another way to run Python on a schedule is to convert your .py script into a
stand-alone executable file, and then use the operating system’s scheduler
(Task Scheduler in Windows or launchd or cron in macOS or Linux).

CHAPTER 15 Integrating with Artificial Intelligence 277

Chapter 15
Integrating with Artificial
Intelligence

As you probably know, artificial intelligence (AI) is the latest big event in
tech evolution, and it’s evolving at a very fast rate. Most people interact
with AI through simple chatbots, where you type a plain-English prompt

into a text box and get a reply. However, you can interact with AI through Python,
and that’s what this chapter is all about.

Accessing Free AI through an API
Most popular AI chatbots provide an application programming interface (API) for
integration with apps. Typically, you need a paid subscription to use it. But in this
chapter, I stick to free AI APIs so you can practice without paying for access.

In this first section, you develop an AI chatbot using Python and Groq (https://
groq.com).

Groq is not the same as Grok, the AI associated with X and xAI. As of this writing,
there is no free API access to Grok, which is why I’m using Groq.

IN THIS CHAPTER

	» Tapping into free AI using an API

	» Creating a chatbot on your
own computer

	» Making your own
conversational chatbot

	» Generating AI images

https://groq.com/
https://groq.com/

278 PART 4 Automating More Advanced Stuff

In addition to being free, Groq is known for its ultrafast AI responses to your
prompt, which is also great when you’re first learning. Keep in mind that the gen-
eral techniques you learn here will apply to all AI APIs to some extent. Any code in
this chapter can easily be adapted to work with any paid service. Of course, you
can also use just about any AI to write a Python script for you to access on any
AI service.

Your first project will be a simple chatbot to get you warmed up. To start this
project, create a folder and virtual environment as always. Activate your virtual
environment and enter the following command to import the required
dependencies:

pip install requests python-dotenv

You’ll need a Groq API key. I discuss API keys in Chapter 9, so I won’t repeat
all the details here. To get a free API key for Groq, browse to https://console.
groq.com and follow the onscreen instructions.

In keeping with security best practices, create a .env file for your Python project
and store your own API key there. Figure 15-1 shows an example. Just make
sure to replace the fake API key shown in Figure 15-1 with the actual API key that
you get from Groq.

Next, I’ll show you all the code for interacting with the Groq chatbot for free
through Python. Comments in the script help to explain some of the key compo-
nents, which I discuss after the code listing.

groq_free.py

pip install requests python-dotenv

import requests

FIGURE 15-1:
Store your own

key in a .env file
for this

code project.

https://console.groq.com
https://console.groq.com

CHAPTER 15 Integrating with Artificial Intelligence 279

import os

from dotenv import load_dotenv

Load environment variables from .env file.

load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env"))

GROQ_API_KEY = os.getenv("GROQ_API_KEY")

Groq Free AI Question Answering Tool

Requires free API key from https://console.groq.com

class GroqFreeClient:

 def __init__(self, api_key: str):

 self.session = requests.Session()

 self.session.headers.update({

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36'

 })

 self.api_key = api_key

 def ask(self, question):

 try:

 url = "https://api.groq.com/openai/v1/chat/completions"

 headers = {

 "Authorization": f"Bearer {self.api_key}",

 "Content-Type": "application/json"

 }

 payload = {

 "model": "llama3-8b-8192",

 "messages": [

 {"role": "user", "content": question}

],

 "max_tokens": 300,

 "temperature": 0.7

 }

 response = self.session.post(url, headers=headers, json=payload,

timeout=30)

 if response.status_code == 200:

 result = response.json()

 return result['choices'][0]['message']['content'].strip()

 else:

 print(f"Groq API error: {response.status_code} {response.text}")

 except Exception as e:

 print(f"Groq API error: {e}")

 return None

280 PART 4 Automating More Advanced Stuff

def main():

 # Get API key from environment variable.

 api_key = GROQ_API_KEY

 if not api_key:

 print("Error: GROQ_API_KEY not provided. Exiting.")

 return

 client = GroqFreeClient(api_key)

 print("\nGroq Free AI Question Answering Tool")

 # Interactive mode

 question = ""

 while question.lower() not in ['quit', 'exit', 'q']:

 try:

 question = input("\nEnter your question (or 'quit' to exit):

").strip()

 if question.lower() in ['quit', 'exit', 'q']:

 break

 if not question:

 continue

 answer = client.ask(question)

 print(f"\nAnswer: {answer if answer else 'No answer received.'}")

 print("\n" + "="*50)
 except KeyboardInterrupt:

 print("\nGoodbye!")

 break

 except Exception as e:

 print(f"Error: {e}")

if __name__ == "__main__":

 # Start interactive mode.

 main()

Starting near the top of the script, you import the requests module for making
HTTP requests to the internet. The os and python-dotenv modules allow you to
retrieve the API key from the .env file using the following lines of code:

Load environment variables from .env file.

load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env"))

GROQ_API_KEY = os.getenv("GROQ_API_KEY")

The next line of code starts a class named GroqFreeClient. Subsequent code
instantiates an object of that class, named client, by calling the class and passing
in the API key that was obtained from the .env file:

client = GroqFreeClient(api_key)

CHAPTER 15 Integrating with Artificial Intelligence 281

The GroqFreeClient class includes an ask() method, which accepts a question or
prompt. That method sets up an HTTP request with the target URL, a headers
block specifying the API key and content type, a payload indicating which AI
model to use (for example, "llama3-8b-8192"), along with other required informa-
tion for the API.

The following line then sends all that information to the specified URL and waits
up to 30 seconds for a response:

response = self.session.post(url, headers=headers, json=payload, timeout=30)

Chapter 9 also discusses JavaScript Object Notation (JSON), which is commonly
used when interacting with online APIs.

If the AI successfully responds to the question, it returns a response code of 200,
plus a JSON response. The start of the JSON response from GrokFreeClient looks
something like the following example, where I’m using ... as a placeholder for
some information. Other AI APIs I’ve used return data in a similar format. I wanted
to give you a sense of what to expect in your own responses.

{

 "id": "chatcmpl-...,

 "object": "chat.completion",

 "created": 1753730086,

 "model": "llama3-8b-8192",

 "choices": [

 {

 "index": 0,

 "message": {

 "role": "assistant",

 "content": "..."

 },

 "logprobs": null,

 "finish_reason": "stop"

 }

]...

}

To get the exact format of an API request for a different AI product, look at the
developer documentation on the product’s website.

In my sample script, the following if block checks to see whether the response
code is 200 (successful). If so, it stores the entire JSON response in a variable
named result. Then the function returns only the chatbot answer, identified by

282 PART 4 Automating More Advanced Stuff

'choices'][0]['message']['content'], from that JSON response. The
.strip() method at the end of that line simply removes any trailing spaces
from the response:

if response.status_code == 200:

 result = response.json()

 return result['choices'][0]['message']['content'].strip()

In a nutshell, this is how you can send a prompt to an AI chatbot and get
the results in a Python script. Of course, there’s additional code for exception
handling and the like. But that sending of the request, and isolating the answer in
the response, is very typical of interacting with any online AI chatbot.

Warming Up to a Local Chatbot
You can run popular AI models like DeepSeek-R1, Gemma 3 from Google,
Meta Llama 3, Qwen locally on your computer without internet access or paid
subscriptions. These models can answer questions, generate text, analyze images,
summarize data, help with coding, and more. Running these models is a great
way to practice and learn AI coding.

Ollama, an open-source tool that lets you run powerful AI large language models
(LLMs) directly on your own computer, is one of the best tools for this. To use
Ollama effectively, your system should have a minimum of 8GB of RAM and at
least 100GB of free disk space — LLM files can be huge. If your system includes an
NVIDIA, AMD, or Apple Silicon graphics processing unit (GPU), or a neural pro-
cessing unit — Ollama will use it automatically to accelerate performance. If
you’re using a CPU-only system, Ollama still functions, but processing may be
significantly slower.

If you’re using a CPU-only system, you’ll get better performance from models
with 1 to 7 billion parameters (1B–7B). TinyLlama 1.1B, Phi-2, and Mistral 7B are
popular smaller models.

For Python, there’s an Ollama module that makes it relatively easy to write Python
code to interact with the local models you download via Ollama. But before you
start writing any Python code, you’ll need to download and install the Ollama app,
which allows you to download models. Let’s start there.

CHAPTER 15 Integrating with Artificial Intelligence 283

Installing and running Ollama
The first step to using Ollama is to download and install it on your computer. You
can find versions for Linux, macOS, and Windows at https://ollama.com/
download. You download and install it just like any other app.

After Ollama is installed, you can run it from the Windows Start menu, the macOS
Launchpad, or however you normally launch apps on Linux. Ollama runs as a
background process, which means you won’t see any open windows or Taskbar/
Dock icons while it’s running. However, you may see a tiny llama icon in the
Windows Notification Area (see Figure 15-2) or on the macOS menu bar (near
the Wi-Fi, battery, and other icons on the right).

Downloading AI models with Ollama
When Ollama is running in the background, you can interact with Ollama through
a command-line interface (CLI). In other words, you can interact with it through
the Terminal window in VS Code on any computer.

Though not required, you can also access Ollama from a command line outside of
VS Code. On Windows, you can use Command Prompt or PowerShell. On macOS or
Linux, use the Terminal app.

To verify that Ollama is running and available, you can check its version number
by entering the command ollama –version (see Figure 15-3). Optionally, use
your web browser to browse to 127.0.0.1:11434 (a local address) and you’ll see
the message Ollama is running. If Ollama isn’t running, entering ollama serve
at the command line should start it.

FIGURE 15-2:
Ollama running in

the background.

https://ollama.com/download
https://ollama.com/download

284 PART 4 Automating More Advanced Stuff

To use an AI model locally, first you have to download it. In the Terminal, enter
the command ollama pull followed by a space and the name of the model you
want to download. For example, entering the following command will download
the popular llama3.2 model:

ollama pull llama3.2

Make sure you spell the model name correctly in your command. Browse to
ollama.com and click the Models link to see the available models and their names.
I mention it because many have weird names that are easy to misspell.

The models tend to be large; each one may take a minute or more to download. If
at any time you want to check to see which models you’ve already downloaded,
enter the command ollama list, as shown in Figure 15-4; you can see the sizes
of the models I’ve downloaded.

Building a simple local chatbot
A chatbot is a form of AI in which you submit a question or prompt, and AI returns
an answer. ChatGPT, Claude, Google Gemini, Grok, Meta AI, and Microsoft Copilot
are all examples of modern chatbots. You can create your own, albeit relatively
simple, chatbot with a downloaded Ollama model and just a few lines of
Python code.

Keep in mind that if your computer doesn’t have a powerful GPU — such as an
NVIDIA card or Apple Silicon chip such as the M1 Ultra, M2 Ultra, M3, or M4, or
AMD MI-series chip — running AI models locally can be painfully slow. For this

FIGURE 15-3:
Checking the

Ollama version
from the VS

Code Terminal.

FIGURE 15-4:
The models I’ve

downloaded.

http://ollama.com

CHAPTER 15 Integrating with Artificial Intelligence 285

example, I recommend downloading a smaller model, tinyllama, which runs at a
decent speed even without high-end hardware. That way, you can get some
hands-on experience writing Python code to interact with AI no matter what
hardware you’re using.

To download tinyllama, make sure Ollama is running on your computer. Then
at any command line, enter the following:

ollama pull tinyllama

You should be able to verify that tinyllama is installed by entering the
command ollama list.

To set up your Python project, create your folder and virtual environment as
usual. Activate your virtual environment and enter the following command in
the Terminal to install the ollama Python module:

pip install ollama

Here’s all the code for the simple chatbot:

simple_chatbot.py

pip install ollama

import ollama

Must be a model you have pulled with Ollama

model = "tinyllama"

print("\nSimple Ollama Chatbot (model: tinyllama)")

print("Type your prompt, or 'quit' to exit.\n")

while True:

 # Get prompt from user.

 prompt = input("You: ").strip()

 if prompt.lower() == "quit":

 print("Goodbye!")

 break

 try:

 # Get response from the Ollama model.

 response = ollama.chat(model=model, messages=[{"role": "user",

"content": prompt}], stream=False)

 print("Bot:", response["message"]["content"])

 except Exception as e:

 print(f"Error: {e}")

I’ll step through key components of the code next.

286 PART 4 Automating More Advanced Stuff

The import ollama line is required to load the ollama module to simplify inter-
acting with Ollama models from Python. The line model = "tinyllama" indicates
which Ollama model you want to use. This must be a model you’ve already down-
loaded using ollama pull.

The line prompt = input("You: ").strip() puts the word You on the screen as
a prompt (you can change that to any text you want). Then the script does nothing
until the user types a prompt and presses Enter. When that happens, the user’s
text is stored in the variable named prompt, with any leading and trailing spaces
removed by the .strip() method.

The next line sends that prompt to the chatbot, waits for a response, and stores
the response in a variable named response:

response = ollama.chat(model=model, messages=[{"role": "user", "content":

prompt}], stream=False)

Let’s dissect that line:

Code Description

ollama.chat Uses the chat method of the ollama module to send a prompt to the AI mode
and accept the resulting reply

model=model Tells ollama to use the model previously stored in the variable named model
(tinyllama in this example)

messages= Defines a dictionary of information about the prompt

"role": "user" Indicates that the prompt is coming from a human user rather than another
model or system

"content": prompt Defines the content of the prompt being sent as the text currently stored in the
variable named prompt

stream=False Ensures that the response is returned all at once, rather than in chunks, which
makes it easier to store that information in the variable named response

This is a super simple chatbot that doesn’t remember conversations, which may
feel strange if you’ve been using conversation AI online for a while. But you can
add some conversational ability to your own Python AI apps, as I explain in the
next section.

CHAPTER 15 Integrating with Artificial Intelligence 287

Creating a Conversational Chatbot
Our super simple chatbot has one weakness: It doesn’t remember anything about
an ongoing conversation. For example, if my first prompt is “My name is Alan.
Say hell0,” it will indeed say hello to me. If my second prompt is “What is my
name?,” it won’t know.

Let’s look at a local chatbot that can carry on a conversation for one session. For
the sake of variety, I’ll use the llama3.2 model, which is more powerful than
tinyllama but terribly slow if your computer lacks GPU or neural processing to
speed things up. If it’s too slow for you to even work with, you can use the
tinyllama model instead. I’ll start by showing you the script in its entirety:

converse_bot.py

Install Ollama: Download and install Ollama from ollama.ai.

pip install ollama.

import ollama

import sys

def initialize_model(model_name):

 # Initialize the Ollama model and check if it's available.

 try:

 # Strip any tag (for example, :latest) from the name for comparison.

 base_model_name = model_name.split(":")[0]

 # Get list of installed models.

 model_list = ollama.list()

 available_models = []

 if "models" in model_list:

 for model in model_list["models"]:

 name = model.get("model")

 if name:

 # Strip any tag from installed model name for comparison.

 installed_base_name = name.split(":")[0]

 available_models.append(installed_base_name)

 if base_model_name not in available_models:

 print(f"Error: Model '{model_name}' not found. Available models:

{available_models}")

 sys.exit(1)

 return model_name

 except Exception as e:

288 PART 4 Automating More Advanced Stuff

 print(f"Error connecting to Ollama: {e}")

 sys.exit(1)

def get_response(model_name, prompt, conversation_history):

 # Generate a response from the Ollama model with conversation context.

 try:

 # Prepare the messages with conversation history.

 messages = conversation_history + [{"role": "user", "content": prompt}]

 # Get the response from the model.

 response = ollama.chat(

 model=model_name,

 messages=messages,

 stream=False

)

 # Extract and return the response content.

 return response["message"]["content"]

 except Exception as e:

 return f"Error generating response: {e}"

def main(model):

 # Main function to run the chatbot

 model_name = initialize_model(model)

 conversation_history = []

 print("Welcome to the Ollama Chatbot! Type 'exit' or 'quit' to stop.")

 print("Start chatting below:\n")

 # Initialize user prompt.

 user_prompt = ''

 while user_prompt.lower() not in ('quit', 'exit'):

 # Get user input.

 user_prompt = input("Type your prompt, or \"quit\": ").strip()

 # Check for exit commands.

 if user_prompt.lower() in ["exit", "quit"]:

 print("Goodbye!")

 break

 # Skip empty inputs.

 if not user_prompt:

 print("Please enter a message.")

 continue

CHAPTER 15 Integrating with Artificial Intelligence 289

 # Add user input to conversation history.

 conversation_history.append({"role": "user", "content": user_prompt})

 # Get response from the model.

 response = get_response(model_name, user_prompt, conversation_history)

 # Print the response.

 print(f"\n\nBot: {response}\n")

 # Add bot response to conversation history.

 conversation_history.append({"role": "assistant", "content": response})

if __name__ == "__main__":

 # Specify which Ollama model to use.

 model="llama3.2"

 main(model)

In this script, you can use any Ollama model you’ve already pulled by changing the
model name in the line that reads model="llama3.2". If the large model is too
slow for your computer, try changing that to model = "tinyllama" as in the pre-
vious script example.

The real meat of the conversational AI script is virtually identical to the super-
simple chatbot I show you in the previous section. You use this one line of code to
send the prompts (messages) to the model and store its reply in a variable
named response:

response = ollama.chat(

 model=model_name,

 messages=messages,

 stream=False

)

The main trick to this script is in the variable named messages, which no longer
contains just what the user typed at the prompt. Instead, messages contains every
prompt the user has entered since starting this session with the script. So, it’s not
really a matter of the model “remembering” the conversation; instead, the script
“reminds” the model of every prompt entered prior to the current prompt.

In the main() function, the following line asks the user to type their prompt
and stores what the user typed in the variable named user_prompt:

user_prompt = input("Type your prompt, or \"quit\": ").strip()

290 PART 4 Automating More Advanced Stuff

After the user types a prompt, the next line of code adds the key "role", the value
"user", the key "content", and whatever prompt the user typed to a list named
conversation_history:

conversation_history.append({"role": "user", "content": user_prompt})

Every time the chatbot responds, that response is also added to the conversation
history. However, the chatbot’s role is "assistant", not "user", so the chatbot can
distinguish between user prompts and its own replies based on the role key. After
a brief conversation, that list of dictionaries may look something like this:

{"role": "user", "content": "My name is Alan. Say hello."},

{"role": "assistant", "content": "Hi, Alan!"},

{"role": "user", "content": "I live in the USA. Where do you live?"},

{"role": "assistant", "content": "We both live in the USA!"},

{"role": "user", "content": "What is my name and where do I live?"},

{"role": "assistant", "content": "Your name is Alan. You live in the USA."}]

The user, of course, never sees that conversation history. From the user’s
perspective, the chatbot is remembering what the user said previously, on its own.
But what’s really going on, behind the scenes, is that the script is resubmitting
every prompt and every response each time it queries the model, and the model
uses that information to give the appearance of “remembering” the ongoing
conversation.

This larger script example does significantly more exception handling than the
super-simple script example did. Comments in the code should make it relatively
easy to understand what’s going on, but the main thing I want you to gain from
this script is that the trick to making an LLM carry on a “conversation” (rather
than just answer one prompt at a time) is to resubmit the entire conversation to
the chatbot every time you post a prompt.

Of course, after you quit the script, the conversation history ceases to exist. The
memory of that conversation won’t carry over to the next time you run the script.

Developing an AI Image Generator
Creating images is another popular AI pastime, and a quick and easy way to get
free — and copyright-free — images for a website or other project. In this section,
I show you how to create your own Python script that can create images for free.

CHAPTER 15 Integrating with Artificial Intelligence 291

As I write this, Pollinations.AI (https://pollinations.ai) provides free access
to online AI image generation without an API key or even requiring you to sign up.
You can learn more about their products, and any current limitations, at their
website. But to get started and try it out, you can just start here.

The first script allows you to type in a prompt describing the image you want to
create, and then asks how many images you want. The script generates the
requested number of images and saves them to a folder. Here’s the entire script:

simple_images.py

pip install requests

import requests

import os

import uuid

import time

from datetime import datetime

Generate one image using pollinations.ai.

def generate_image(prompt, save_path, retries=3):

 # Adding a uuid ensures that the prompt and the generated image are unique.

 unique_prompt = f"{prompt}-{str(uuid.uuid4())}"

 url = f"https://image.pollinations.ai/prompt/{unique_prompt}"

 for attempt in range(retries):

 try:

 response = requests.get(url, stream=True)

 if response.status_code == 200:

 # Use current datetime for filename

 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")

 image_path = os.path.join(save_path, f"{timestamp}.png")

 with open(image_path, "wb") as f:

 for chunk in response.iter_content(chunk_size=8192):

 f.write(chunk)

 return image_path

 else:

 print(f"Error: Status code {response.status_code}")

 time.sleep(5)

 except requests.RequestException as e:

 print(f"Request failed: {e}. Retrying {attempt + 1}/{retries}...")
 time.sleep(5)

 return None

https://pollinations.ai/

292 PART 4 Automating More Advanced Stuff

def generate_all_images(prompt, save_path, num_images):

 print(f"\n\nGenerating {num_images} images...please wait.")

 # Create the save path if it doesn't exist.

 os.makedirs(save_path, exist_ok=True)

 # Generate each imaget.

 for i in range(num_images):

 image_path = generate_image(prompt, save_path)

 if image_path:

 print(f"Generated image {i+1} of {num_images} in {image_path}")
 else:

 print(f"Failed to generate image {i+1}")

if __name__ == "__main__":

 # Set the save path and prompt for generating images.

 save_path = "generated_images"

 # Prompt at runtime.

 prompt = input("Enter your image prompt: ").strip()

 while not prompt:

 prompt = input("Prompt cannot be empty: ").strip()

 while True:

 try:

 num_images = int(input("How many images? ").strip())

 if num_images > 0:

 break

 else:

 print("Please enter a positive integer.")

 except ValueError:

 print("Please enter a valid integer.")

 # Generate the images and show indicate when done.

 generate_all_images(prompt, save_path, num_images)

 print(f"{num_images} images added to {save_path}.")

The simple image generator uses the request moule to access the web, so make
sure you pip install requests into your virtual environment before running
this script.

When you run the script, you’ll first see the following:

Enter your image prompt:

CHAPTER 15 Integrating with Artificial Intelligence 293

Describe the image you want to create. For example:

A rainbow-colored butterfly hovering near a giant red hibiscus flower. In the

background a futuristic neon cyberpunk dystopian urban landscape.

Press Enter and you’ll see the following prompt:

How many images?

As with any free AI, Pollinations.AI has some limitations. The limitations aren’t
specifically stated on their site as I write this, but I suggest limiting yourself to
four images or so per prompt, so as not to overuse the system.

Press Enter after entering your number and wait a bit. You should see a message
each time a new image is generated, and then a final message indicating when the
image generation is done. The images will be stored in a subfolder named gener-
ated_images in the same folder as your code. Each image will have a unique file-
name based on the date and time it was created, as shown in Figure 15-5.

FIGURE 15-5:
AI-generated

images created
by simple_
images.py.

294 PART 4 Automating More Advanced Stuff

Let’s look at the key components of the code related to connecting to the AI,
generating the images, and saving them to a local folder. Down near the bottom
of the code, this line specifies where to save the images (feel free to replace
"generated_images" with a folder name or path of your own choosing):

save_path = "generated_images"

The generate_image() function does most of the work of generating one image
and saving it. Near the top of that function are these two mysterious lines:

unique_prompt = f"{prompt}-{str(uuid.uuid4())}"

url = fhttps://image.pollinations.ai/prompt/{unique_prompt}

As it turns out, if you submit the exact same prompt to Pollinations.AI multiple
times, you’ll likely get four of the exact same image. The uuid4() method returns a
unique string of random characters and appends them to the image prompt. This
ensures a unique prompt for each submission, which helps to add some variety to
the generated images.

The second line is the URL to which the code will send the prompt and then wait
for it to return an image.

As with most scripts in this book, this one has plenty of exception handling to
handle errors gracefully. Right off the bat, you may notice that the loop to gener-
ate one image starts with the following line:

for attempt in range(retries):

That retries value is defined in the function call as retries=3. For any one
prompt, it will try three times to get one image. To get one image, the script uses
the simple line:

response = requests.get(url, stream=True)

The url (shown earlier) is the URL for generating one image from a prompt.
The stream=True allows a large image file to be downloaded in chunks, which
helps to ensure the entire file is fully downloaded before the response variable
gets its value.

The next lines execute only if the server sends the image and a response code
of 200. That 200 number indicates that the transaction was successful. At
the point the script generates a filename from the current datetime, with a.png
extension, and saves the image file to that filename.

CHAPTER 15 Integrating with Artificial Intelligence 295

if response.status_code == 200:

 # Use current datetime for filename

 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")

 image_path = os.path.join(save_path, f"{timestamp}.png")

 with open(image_path, "wb") as f:

 for chunk in response.iter_content(chunk_size=8192):

 f.write(chunk)

The response.iter_content(chunk_size=8192) reads the response body in
chunks of 8KB, which is memory-efficient for large files. Each chunk is written to
a file (output_image.png) in binary mode ("wb").

When working with images, it’s important to specify binary as the write mode
(wb), because you’re not dealing with textual data. The data is stored as raw bytes,
which is essential to preserving the integrity of the image.

The script works fine as is. But you may be thinking that a purely textual interface
for an app that deals in images is a bit strange. It would be nice to present a more
graphical interface that would allow the user to see the image on the screen. In the
next section, I show you how to display the image onscreen in a more graphi-
cal manner.

Showing the generated image onscreen
The purely text interface of Python at the command line is fine for automation.
But now that we’re dipping our toes into AI and images, a more graphical approach
may be preferred.

For the next script, you’ll use gradio to create a web page that presents a text box
for typing a prompt, a button, and a place to show the generated image when it’s
done, as shown in Figure 15-6.

gradio is a Python library that allows you to write Python code to create interactive
web interfaces, which are displayed as standard web pages in a browser. gradio
also provides tools for interfacing with AI online, so it suits our needs per-
fectly here.

To use gradio in a script, you just set up your project folder and virtual environ-
ment as usual. Activate your virtual environment. Then use pip install to install
gradio. You’ll also use the requests module to access AI over the internet, and
Pillow to help with downloaded images. So, before you get started, enter the fol-
lowing command in the Terminal:

pip install requests gradio Pillow

296 PART 4 Automating More Advanced Stuff

Next, I’ll show you all the code for script. After the code, I explain the key compo-
nents that make it work. You may be pleasantly surprised to see how little code it
takes to pull off this feat.

gradio_image.py

pip install requests gradio Pillow

import requests

import gradio as gr

from PIL import Image

import time

import io

Generate one image based on a prompt using Pollinations.AI.

def generate_image(prompt, status_box, retries=3):

 url = f"https://image.pollinations.ai/prompt/{prompt}"

 for attempt in range(retries):

 try:

 status_box = gr.update(value=f"Attempt {attempt+1}:
Requesting image...")

FIGURE 15-6:
AI-generated

image shown in a
graphical user

interface.

CHAPTER 15 Integrating with Artificial Intelligence 297

 yield None, status_box

 response = requests.get(url, stream=True)

 if response.status_code == 200:

 status_box = gr.update(value="Image generated.")

 yield Image.open(io.BytesIO(response.content)), status_box

 return

 else:

 status_box = gr.update(value=f"Error: Status code {response.

status_code}")

 yield None, status_box

 time.sleep(2)

 except requests.RequestException as e:

 status_box = gr.update(value=f"Request failed: {e}. Retrying...")

 yield None, status_box

 time.sleep(2)

 status_box = gr.update(value=f"Failed to generate image after {retries}

attempts.")

 yield None, status_box

Call function to generate the image, then show results on page.

def gradio_generate(prompt):

 if not prompt.strip():

 yield None, gr.update(value="Prompt cannot be empty.")

 return

 yield None, gr.update(value="Starting generation...")

 for image, status in generate_image(prompt, status_box=None):

 yield image, status

Create the interface with text boxes, buttons, and image output.

with gr.Blocks() as demo:

 gr.Markdown("# Python AI Image Generator")

 prompt = gr.Textbox(label="Enter your image prompt")

 generate_btn = gr.Button("Generate")

 output_image = gr.Image(label="Generated Image")

 status = gr.Textbox(label="Status / Error Messages", interactive=False)

 generate_btn.click(

 gradio_generate,

 inputs=prompt,

 outputs=[output_image, status]

)

if __name__ == "__main__":

 demo.launch()

298 PART 4 Automating More Advanced Stuff

Running the script shows the following in the Terminal:

* Running on local URL: http://127.0.0.1:7860

To see the web page, you need to browse to the URL shown in the first line. On
Windows or Linux, you can just Ctrl+click the underlined link. On macOs, ⌘  +click
the link. Your default web browser should open, showing a page that looks like
Figure 15-7.

When the web page opens, type your image prompt, click Generate, and wait a few
seconds. When you see the image, you can download a copy by clicking the Down-
load icon near the upper-right corner of the image control.

The official documentation for gradio can be found on the Gradio website at www.
gradio.app/docs.

All the controls on the web page are created using this block of code. Note that in
the imports section near the top of the script, I use the line import gradio as gr
to import gradio, so gr is an abbreviated name I can use in the rest of the code to
reference gradio.

FIGURE 15-7:
gradio web
interface for

generating
an image.

https://www.gradio.app/docs
https://www.gradio.app/docs

CHAPTER 15 Integrating with Artificial Intelligence 299

Create the interface with text boxes, buttons, and image output.

with gr.Blocks() as demo:

 gr.Markdown("# Python AI Image Generator")

 prompt = gr.Textbox(label="Enter your image prompt")

 generate_btn = gr.Button("Generate")

 output_image = gr.Image(label="Generated Image")

 status = gr.Textbox(label="Status / Error Messages", interactive=False)

The first line creates a gr.Blocks object, which is basically a collection of controls
on a web page. In this case, that block is named demo. gr.Markdown() shows the
page title. gr.Textbox() shows the text box and label "Enter your image
prompt". gr.Button() creates the button. The gr.Image() creates the image
control that will display the generated image (when available).

The last text box, named status, shows progress indicators and error messages.
It’s not interactive because it’s not intended as a box where the user enters text,
but rather as a way for the script to show information.

Then comes the following block of code:

generate_btn.click(

 gradio_generate,

 inputs=prompt,

 outputs=[output_image, status]

)

That block of code tells Python what to do when the user clicks the generate_btn
button. When clicked, the button calls a function named gradio_generate()
(which I show you in a moment). It passes into that function whatever prompt the
user typed into the prompt text box. The last line, outputs=[output_image,
status], indicates that the function will generate two outputs: one named
output_image (which will be the generated image), and the other named status
(a text message indicating status or an error message).

The very last line of code, demo.launch(), is what assembles the web page that
the browser shows and then displays the instructions to access that page at the
URL http://127.0.0.1:7860.

In the web browser, you can right-click an empty spot on the generated web page
and choose View Page Source (or the equivalent option in your browser) to see
the Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript that Python generated from your gradio code.

300 PART 4 Automating More Advanced Stuff

So, how does the rest work? Recall that clicking the Generate button calls a
function named gradio_generate() and passes in the user’s prompt as input.
That function, in turn, does some quick exception handling to ensure that the
prompt isn’t empty.

Call function to generate the image, then show results on page.

def gradio_generate(prompt):

 if not prompt.strip():

 yield None, gr.update(value="Prompt cannot be empty.")

 return

 yield None, gr.update(value="Starting generation...")

 for image, status in generate_image(prompt, status_box=None):

 yield image, status

Note the use of the keyword yield in that function. The word yield is a gradio
keyword that creates a generator function that can return multiple values. In
other words, it supports streaming outputs (where a function can return different
values over time), which is exactly what you need if you want to show a progress
indicator as a function is running.

In this example, the yield keyword returns two values each time it’s called. The
first value is placed in the image placeholder, where the generated image appears,
after it’s completed. The second value is displayed in the status box, which keeps
the user informed of status or any error messages.

In the gradio_generate() function, this first yield line is as follows:

yield None, gr.update(value="Prompt cannot be empty.")

It shows nothing (None) in the image box, and an error message ("Prompt
cannot be empty.") in the status text box if the user didn’t provide a prompt.
Otherwise, the following line executes:

yield None, gr.update(value="Starting generation...")

This line still leaves the image box empty. But the status text box displays the text
to tell the user that image generation has started.

The next line sets up a for loop to call the function named in generate_image()
repeatedly. The prompt parameter is the user’s prompt for creating the image. The
status_box parameter gets None as input, because there is no status to report at
this moment in time.

for image, status in generate_image(prompt, status_box=None):

CHAPTER 15 Integrating with Artificial Intelligence 301

Within that loop, yield image, status simply updates that image box and
status box as the generate_image() function is running.

The generate_image() function does the actual image generation. There’s
considerable exception handling in that function to manage unforeseen
problems. In fact, for any one image the retries=3 parameter will give the AI
three chances to fully generate the image before giving up. The most important
lines of code in the generate_image() function are the following:

if response.status_code == 200:

 status_box = gr.update(value="Image generated.")

 yield Image.open(io.BytesIO(response.content)), status_box

 return

The response code of 200 indicates that no errors have occurred and an image was
returned. When that happens, the status_box text is set to "Image generated.",
and the generated image is displayed in the image box via Image.open(io.
BytesIO(response.content)) where response.content is the content of what
the AI image generator returned to the calling code.

As a user, after the image appears in the browser, you can hover the mouse pointer
over the image and click Download to save a copy.

Be aware that closing the browser window doesn’t end the Python script. To
get back to a normal command line, click inside VS Code’s Terminal window
and press Ctrl+C or ⌘  +C on macOS, to interrupt the current session and end
the script.

Hitting up Hugging Face
Hugging Face (https://huggingface.co) is a popular website for sharing AI
models and applications that you’re free to use. They offer an inference API that
you can access via Python to generate AI text and images using a variety of models.

Unfortunately, you can’t use Hugging Face to generate images entirely for free.
They do offer a free tier where you can generate a few images using a script like
the one shown in this chapter, so at least you can learn some things and try out
your code for free. But if you want to continue using Hugging Face AI, you’ll need
to set up a paid account. See the Hugging Face website for more information on
switching to a paid account if you run out of free credits and want to pursue this
type of coding further.

https://huggingface.co/

302 PART 4 Automating More Advanced Stuff

To use Hugging Face, even for free, you’ll need to first set up a free account. Then
you’ll need an API token, which is basically the same thing as an API key. You can
get one at https://huggingface.co/settings/tokens after you set up
your account.

Chapter 9 discusses APIs and API keys in detail.

I’ll show you a complete script for generating images from Hugging Face in a
moment. But to get started with this script, set up a folder and virtual environ-
ment as you normally would. Activate your virtual environment, and enter the
following command to install all the required dependencies:

pip install gradio requests Pillow python-dotenv

In keeping with security best practices (and good habits), I suggest you also create
a .env file and store your API key there. Figure 15-8 shows an example.

The API key in Figure 15-8 is fake and used only as an example. Make sure to put
your own API key in your own .env file.

Here’s all the code for the script to generate images using a Hugging Face model.
As in the previous code example, I use gradio to provide a nice graphical interface
that can show the generated image.

hugging_face.py

pip install gradio requests Pillow python-dotenv

import gradio as gr

import requests

from PIL import Image

import io

import os

from dotenv import load_dotenv

Get API token from https://huggingface.co/settings/tokens.

FIGURE 15-8:
A .env file with
an API token for

Hugging Face.

https://huggingface.co/settings/tokens

CHAPTER 15 Integrating with Artificial Intelligence 303

Load environment variables from .env file

load_dotenv()

HF_API_TOKEN = os.getenv("HF_API_TOKEN")

Using Stable Diffusion XL, a reliable free model on Hugging Face

MODEL_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-

diffusion-xl-base-1.0"

def generate_image(prompt):

 # Generate an image from a text prompt using Hugging Face API.

 if not HF_API_TOKEN:

 return None, "Error: Please set your HF_API_TOKEN environment variable"

 if not prompt or prompt.strip() == "":

 return None, "Error: Please enter a prompt"

 headers = {

 "Authorization": f"Bearer {HF_API_TOKEN}"

 }

 # For the inference API, we send the prompt as simple JSON.

 payload = {

 "inputs": prompt

 }

 try:

 # Make request to Hugging Face API.

 response = requests.post(MODEL_URL, headers=headers, json=payload,

timeout=120)

 if response.status_code == 200:

 # Convert response to PIL image.

 image = Image.open(io.BytesIO(response.content))

 return image, f"Image generated successfully for: '{prompt}'"

 elif response.status_code == 503:

 return None, "Model unavailable, please try again later"

 elif response.status_code == 401:

 return None, "Authentication error, check your API token"

 elif response.status_code == 400:

 return None, f"Bad request: {response.json() if response.content

else 'Invalid prompt'}"

 else:

 error_msg = response.json() if response.content else response.text

 return None, f"Error {response.status_code}: {error_msg}"

304 PART 4 Automating More Advanced Stuff

 except requests.exceptions.Timeout:

 return None, "Request timed out. Please try again."

 except Exception as e:

 return None, f"Error: {str(e)}"

def create_interface():

 # Create and configure the Gradio interface

 with gr.Blocks(title="AI Image Generator", theme=gr.themes.Soft()) as

interface:

 gr.Markdown("# AI Image Generator")

 gr.Markdown("Generate images from text prompts using Hugging Face")

 with gr.Row():

 with gr.Column(scale=2):

 prompt_input = gr.Textbox(

 label="Image Prompt",

 placeholder="Enter your image description (e.g., 'a sunset

over mountains')",

 lines=3,

 max_lines=5

)

 generate_btn = gr.Button(

 "Generate Image",

 variant="primary",

 size="lg"

)

 status_output = gr.Textbox(

 label="Status",

 interactive=False,

 show_label=True

)

 with gr.Column(scale=2):

 image_output = gr.Image(

 label="Generated Image",

 type="pil",

 interactive=False

)

 # Set up the button event handler.

 generate_btn.click(

 fn=generate_image,

CHAPTER 15 Integrating with Artificial Intelligence 305

 inputs=[prompt_input],

 outputs=[image_output, status_output],

 show_progress=True

)

 # Allow Enter key in lieu of clicking button.

 prompt_input.submit(

 fn=generate_image,

 inputs=[prompt_input],

 outputs=[image_output, status_output],

 show_progress=True

)

 return interface

if __name__ == "__main__":

 # Create and launch the interface.

 interface = create_interface()

 # Launch with public sharing disabled by default.

 # Set share=True if you want a public link.

 interface.launch(

 server_name="127.0.0.1",

 server_port=7860,

 share=False,

 show_error=True,

 quiet=False

)

The gradio code for generating the user interface is in the bottom half of the
script, starting with the create_interface() function. That function contains
the code necessary to create the web interface shown in Figure 15-9, which
includes a text box for typing an image prompt, a button to submit the prompt, a
Status text box for showing a progress indicator or error messages, and an image
control for showing the generated image.

The code indented under if __name__ == "__main__" is the code that launches
the script and initially shows the following prompt in the Terminal.

* Running on local URL: http://127.0.0.1:7860

When you see that prompt, just Ctrl+click the link in Windows or Linux or ⌘  +click
the link on macOS. The interface will open in your default web browser. Type in
your prompt, click Generate Image, and wait for the image to appear.

306 PART 4 Automating More Advanced Stuff

The actual image generation takes place higher up in the script. These first lines
get the API token from the .env file and set up the URL for accessing a Hugging
Face image generator. I used an older Stable Diffusion model because it’s reliable
and likely to give you successful results on your first try. But you can change the
URL to use any image generation model that Hugging Face offers.

Load environment variables from .env file.

load_dotenv()

HF_API_TOKEN = os.getenv("HF_API_TOKEN")

Using Stable Diffusion XL, a reliable free model on Hugging Face

MODEL_URL = https://api-inference.huggingface.co/models/stabilityai/

stable-diffusion-xl-base-1.0

The function that starts with def generate_image(prompt) generates the image
from the user’s prompt. There’s quite a bit of exception handling in there to
handle all the things that could go wrong (but hopefully won’t). The next lines set
up the headers and payload that need to be sent to Hugging Face. The headers
provide your authorization (API token), and the payload is the image prompt:

headers = {

 "Authorization": f"Bearer {HF_API_TOKEN}"

}

For the inference API, we send the prompt as simple JSON.

payload = {

 "inputs": prompt

}

FIGURE 15-9:
gradio user
interface for

generating
AI images.

https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0
https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0

CHAPTER 15 Integrating with Artificial Intelligence 307

This next line sends the request to Hugging Face and stores the response in a
variable named response:

response = requests.post(MODEL_URL, headers=headers, json=payload, timeout=120)

The response includes a response.status_code, which will be 200 if all went
well. Otherwise, that response.status_code will be some other number, and you
can see lots of exception handling for those other numbers as well. Assuming all
went well, this line put the generated image into a variable named image:

image = Image.open(io.BytesIO(response.content))

The io.BytesIO(response.content) wraps the raw image bytes in the
response content into an object that’s more like what you’d get when opening
an image file. This allows the bytes to be treated as if they were read from a
file, which is necessary because Image.open expects a file-like object or a file
path to put into that image variable.

Assuming all went will with image generate and you have a viable image in the
image variable, the following line in the function returns the image and some
status text to the calling code:

return image, f"Image generated successfully for: '{prompt}'"

That function was called by gradio down in that section of code, which tells
Python what to do with the two returned values.

Not to confuse things, but you actually call generate_image() from two different
gradio blocks, and each block contains code telling Python what to do with the
returned image and status text:

Set up the button event handler

generate_btn.click(

 fn=generate_image,

 inputs=[prompt_input],

 outputs=[image_output, status_output],

 show_progress=True

)

Allow Enter key in lieu of clicking button

prompt_input.submit(

 fn=generate_image,

308 PART 4 Automating More Advanced Stuff

 inputs=[prompt_input],

 outputs=[image_output, status_output],

 show_progress=True

)

I use two blocks of gradio code where the first block responds to a click on
the Generate Image button, and the second responds to the user pressing Enter
in the Image Prompt text box (because I don’t know which of those two things
the user is likely to do after typing a prompt). The outputs=[image_output,
status_output] in each of those blocks direct the returned image to the image
control named image_output and direct the returned text to the status_
output text box.

As I mention in the previous example, closing the browser doesn’t end the Python
script. Click inside the Terminal window in VS Code and press Ctrl+C or ⌘  +C on
macOS to end the script and current session before modifying and rerunning
the script.

5The Part of Tens

IN THIS PART . . .

Appreciate the top ten Zen of Python aphorisms.

Know what to do with the top ten error messages.

CHAPTER 16 Top Ten Zen of Python Guidelines 311

Chapter 16
Top Ten Zen of Python
Guidelines

The Zen of Python is a philosophy of writing code that emphasizes clarity,
simplicity, and practicality — code that’s easy for you, and perhaps other
developers, to understand, modify, and maintain. Being Pythonic means

writing code that adheres to the Zen of Python principles.

The Zen of Python consists of 19 aphorisms or principles. Entering the command
import this at a Python command prompt lists these 19 aphorisms, but you
won’t get any details or examples that way. In this chapter, I go through the top
ten Zen of Python principles, with some explanations and examples to give you a
better understanding.

Beautiful Is Better than Ugly
This principle emphasizes that code should be aesthetically pleasing, readable,
and elegant, prioritizing clarity and simplicity over convoluted or messy solu-
tions. In the context of Python, “beautiful” code is intuitive, maintainable, and
aligns with the language’s idiomatic style, whereas “ugly” code is overly complex,
hard to read, or unnecessarily obscure.

IN THIS CHAPTER

	» Writing beautiful code

	» Keeping things clean and simple

	» Handling errors gracefully so your
scripts don’t crash

312 PART 5 The Part of Tens

S0, what are some things that can make code beautiful? Think in terms of being
able to read and instantly understand its intent. Think in terms of:

	» Readability: Beautiful code is easy to understand at a glance, even for
someone unfamiliar with the project.

	» Simplicity: Beautiful code avoids unnecessary complexity, favoring straight-
forward solutions.

	» Expressiveness: Beautiful code leverages Python’s features to convey intent
clearly and concisely.

	» Maintainability: Beautiful code is easier to debug, extend, and col-
laborate on.

In contrast, ugly code sacrifices these qualities for quick fixes, clever tricks, or
overengineered solutions that obscure intent.

Sometimes being beautiful is simply a matter of using fewer words. For example,
the following code below uses an if statement to determine whether the length
of a list is greater than zero:

my_list=[1,2,3,4,5]

if len(my_list)>0:

 print("list is not empty")

Technically, there’s nothing wrong with the code, and it will run as expected.
However, Python automatically makes any empty list return False when you refer
to the list by name in an if statement. The name of a non-empty list always returns
True. So, you could make that code more beautiful by taking advantage of that fact,
like this:

my_list=[1,2,3,4,5]

if my_list:

 print("list is not empty")

That tiny change on the second line may seem insignificant. But when you’re
working at a professional level and dealing with thousands of lines of code, small
changes like that add up.

Here’s another example:

Clunky and repetitive

my_dict = {"a": 1, "b": 2}

if "c" in my_dict:

CHAPTER 16 Top Ten Zen of Python Guidelines 313

 value = my_dict["c"]

else:

 value = 0

print(value)

Again, that code works as written. It creates a dictionary named my_dic and popu-
lates it with two keys named "a" and "b", giving each key a value. Then an if
statement checks to see whether the dictionary contains a key named "c" and
assigns c a value of 0 if that key doesn’t exist.

If you’re wondering whether there’s a more beautiful way to write some code you
already have, consider copying and pasting the code into artificial intelligence
(AI), and asking whether there is a more beautiful or Pythonic way to write
that code.

A more elegant way to handle this example would be to use Python’s .get() method,
which allows you to assign a default value to any missing key, on the fly. For
example, the following example does exactly what the previous code does, but
with fewer lines, making it more beautiful:

Clean and succinct using get()

my_dict = {"a": 1, "b": 2}

value = my_dict.get("c", 0)

print(value)

This version is beautiful because it’s simpler, cleaner, and easier to read.

Let’s look at an example where I create a function named check_number that
returns True if a positive number is passed in; otherwise, it returns False:

def check_number(n):

 if n > 0:

 return True

 else:

 if n <= 0:

 return False

The code, as written, works properly and contains no errors. But here’s a more
beautiful version of the function that also returns True if a positive number is
passed in or False for any other number:

def is_positive(number):

 return number > 0

314 PART 5 The Part of Tens

The latter function is more beautiful because its name, is_positive, is more
descriptive than check_number in terms of what the function does and returns.
The parameter name, number, is more descriptive than just using n as a variable
name. Performing the test and returning a value is handled by the single line
return number > 0, as an alternative to the complex if...else statement.

Here’s one more example where we use some code to create a list of numbers. The
additional code creates a second list, containing only even numbers from the
original list:

my_list = [1, 2, 3, 4, 5]

new_list = []

for i in range(len(my_list)):

 if my_list[i] % 2 == 0:

 new_list.append(my_list[i])

print(new_list)

The code works fine as is, but it’s bulky and difficult to read. It isn’t very pretty to
look at either. The following code accomplishes the same thing with far fewer
lines and no indentations:

numbers = [1, 2, 3, 4, 5]

even_numbers = [num for num in numbers if num % 2 == 0]

print(even_numbers)

Not only is the latter code more succinct and easier to read, but using names like
numbers and even_numbers helps to make the code more readable and easier to
understand — and, thus, more beautiful!

Explicit Is Better than Implicit
This principle is a way of saying that code should clearly express its intent, avoid-
ing hidden or assumed behavior. Implicit code relies on defaults, side effects, or
unclear assumptions, which can obscure meaning and lead to errors. Explicit
code, by contrast, makes actions, types, and intentions obvious, improving read-
ability and maintainability.

To clarify the difference between explicit and implicit consider the following:

	» Explicit code clearly states what the code does, using precise names, types,
or operations.

CHAPTER 16 Top Ten Zen of Python Guidelines 315

	» Implicit code relies on defaults, magic behavior, or context that isn’t immedi-
ately obvious to all developers.

Being explicit encourages writing code that is self-documenting and predictable,
reducing the need for developers to guess or dig into documentation to
understand it.

Let’s work through an example of making code more explicit. We’ll start with this
“ugly” code (referring to the preceding section):

def tot(x,y):

 st =x * y

 return x + st

The code works — it returns the original value of x with st added, where st is that
x value multiplied by y. But what exactly does that get us? Here’s a rewrite of the
code that’s more explicit in terms of what the code does:

def total_with_tax(total_sale,sales_tax_rate):

 return round((1 + sales_tax_rate) * total_sale.2)

It’s easier to tell what’s going on in this version. The function name, total_
with_tax, gives you a hint as to what the function returns. The names
total_sale and sales_tax_rate are much more explicit than x and y, and
they give you some clue as to what to pass into the function.

Intentionally using abbreviations and single-letter variable names to keep your
code compact works against explicitness. Follow PEP 8 guidelines (https://
peps.python.org/pep-0008) and use all lowercase variable names that are mean-
ingful, with underscores in place of spaces, to keep your code’s meaning explicit.

To add the sales tax amount to the total sale, the function adds the sales tax rate
(say, 0.07) to 1, and then multiples that value by the total sale, a simple and accu-
rate way to add sales tax to total_sale. The code is more descriptive just by using
better names for things. But we can do more to make the code even more explicit.

Using type hints
Python doesn’t require you to declare a type for every value you create. Instead, it
uses dynamic typing, where you simply enter a value (for example, 10, 123.45, or
"Hello") and Python figures out its data type automatically. Although this feature is
convenient, it can make code harder to read because the type isn’t explicitly shown.

https://peps.python.org/pep-0008
https://peps.python.org/pep-0008

316 PART 5 The Part of Tens

Python type hints allow you to specify data types for values passed into and
returned from functions. That way, anybody working with your code knows
exactly what kind of value to pass into and expect from a function. To use type
hints in a function’s parameter list, follow the parameter name with a colon and
the data type, using one of the abbreviations (int, float, bool, str, list, dict,
object, None, and so on).

If you need a reminder of data types, turn to Chapter 3.

Here is the total_with_tax() function with type hints added to the top line:

def total_with_tax(total_sale: float, sales_tax_rate: float) -> float:

 return (1 + sales_tax_rate) * total_sale

The type hints show that both total_sale and sales_tax_rate should be the
float type, and that the function returns a float as well.

Using comments
Python code comments are ideal for making code more explicit. Referring to the
previous example, it may not be clear how to pass in a sales tax rate. A comment
for the return type may be useful. You can put the comments above the code, if you
like, or you put the comments right inside the function as shown here:

def total_with_tax(total_sale: float, sales_tax_rate: float) -> float:

 # total_sale (float): The taxable sale amount (positive number)

 # sales_tax_rate (float): Tax rate as decimal (for example, 0.07 for 7%)

 # Returns float rounded to pennies (two decimal places)

 return round((1 + sales_tax_rate) * total_sale,2)

The comments provide info about the values you’d pass into the function and
what to expect in return.

Handling errors
Building exception handling into your code helps make code more explicit, by
leaving no doubt as to what data isn’t acceptable. The sample automation scripts
in this book all use exception handling to handle errors gracefully. For this simple
example with sales tax calculations, we can add some exception handing to reject
negative sales amounts or invalid percentages, like this:

CHAPTER 16 Top Ten Zen of Python Guidelines 317

def total_with_tax(total_sale: float, sales_tax_rate: float) -> float:

 # total_sale (float): The taxable sale amount (positive number)

 # sales_tax_rate (float): Tax rate as decimal (for example, 0.07 for 7%)

 # Returns float rounded to pennies (two decimal places)

 # Exception handling

 if total_sale < 0:

 raise ValueError("Total sale cannot be negative")

 if not 0 <= sales_tax_rate <= 1:

 raise ValueError("Sales tax rate must be between 0 and 1")

 return round((1 + sales_tax_rate) * total_sale, 2)

You could add even more comments to the code, to explain the exception han-
dling, though the error messages in the code ("Total sale cannot be negative"
and "Sales tax rate must be between 0 and 1") are self-explanatory.

Turn to Chapter 3 for more information on exception handling. Chapter 17 also
provides information on common exceptions and how to handle them.

With the function written the way it is now, any Python programmer can call the
function and handle any errors using a try...except block, like this:

if __name__ == "__main__":

 total_sale = 10.00

 sales_tax_rate = 0.07

 try:

 result = total_with_tax(total_sale, sales_tax_rate)

 print(f"Total with tax: ${result}")

 except ValueError as e:

 print(f"Error: {e}")

Being specific (and explicit) in your coding makes it easier for others (and
perhaps your future self) to really understand the intent of the code and how best
to use it.

Simple Is Better than Complex
This principle emphasizes that clear, straightforward solutions are preferable to
overly complicated ones. For a beginning programmer, this means writing code
that’s easy to read, understand, and maintain. Simple code reduces bugs, makes

318 PART 5 The Part of Tens

collaboration easier, and helps you focus on solving the problem rather than
wrestling with the code itself. To summarize:

	» Choose clear logic. Avoid convoluted approaches when a direct one works.

	» Use readable code. Write code that others (or your future self) can under-
stand quickly.

	» Avoid over-engineering. Don’t add unnecessary features or layers of
abstraction.

For example, here’s a function that accepts a number and returns that num-
ber squared:

def calculate_square(number):

 result = number ** 2

 return result

This function works, but it’s unnecessarily verbose. It uses a temporary variable
(result) and a function when a simpler approach would suffice, like this:

def square(number):

 return number * number

This version is concise, has a clear name, and directly returns the result. It’s easier
to read and does the same thing.

Large functions that perform many operations before returning a value can add to
code complexity. Consider decomposing complex functions into smaller, simpler
ones. Each function should ideally do one thing well, making testing, debugging,
and maintenance easier.

Here’s another example where the function returns True if passed an even num-
ber; otherwise, it returns False:

def is_number_even(num):

 if num % 2 == 0:

 return True

 else:

 return False

This code is overly verbose because it uses an if...else structure to return True
or False when the condition itself is already a Boolean. In other words, the
expression num % 2 == 0 returns True if num is evenly divisible by 2 (that is, if

CHAPTER 16 Top Ten Zen of Python Guidelines 319

the remainder is zero); otherwise, the expression returns False. Here’s a much
simpler, cleaner way to write this function:

def is_even(num):

 return num % 2 == 0

This version is shorter and clearer. The expression num % 2 == 0 already evalu-
ates to True or False, so the function just returns that result.

If you’re looking at your own code, wondering if there’s a simpler way to achieve
a result, consider copying and pasting that code into AI and asking “Is there a
simpler, more Pythonic way to do what this code does?”

Here’s an example where the function totals all the numbers in any list that’s
passed to the function:

def sum_list(numbers) :

 total = 0

 for i in range(len(numbers)):

 total += numbers[i]
 return total

The function works. When you’re first learning Python, you may see code like this
as an example of using a loop. However, lists have a built-in sum() function, which
accomplishes the same thing, but with a single line of code:

def sum_list(numbers):

 return sum(numbers)

To clarify exactly what should be passed into the function, you can add a type hint,
like this:

def sum_list(numbers: list):

 return sum(numbers)

The beauty of this version is that the both the input (a list of numbers) and the
output (the sum of numbers) is clearly stated in the minimal code. Python’s built-
in sum() function is both simpler and more efficient.

Beginning programmers are often tempted to write complex code to feel “clever”
or because they’re mimicking something they saw somewhere else. But complex
code often leads to more bugs, difficult debugging, and other people misusing
your code because they don’t understand what the code is about. If you keep things
simple, you make your code more reliable and easier to work with.

320 PART 5 The Part of Tens

Complex Is Better than Complicated
For a newbie Python developer, this principle means that it’s okay for your code
to handle complex tasks or ideas, but it should avoid being unnecessarily compli-
cated. Here’s the difference:

	» Complex code deals with intricate problems but is structured, readable, and
logical. It embraces the necessary complexity of the task while keeping things
as straightforward as possible.

	» Complicated code is overly tangled, hard to follow, or unnecessarily obscure,
making it difficult to understand or maintain.

As a beginner, think of this as choosing a clear path to solve a problem, even if the
problem requires multiple steps, rather than creating a messy, hard-to-follow
solution. As an example, let’s look at a sum of squares function, that calculates the
sum of squares for numbers from 1 to n (for example, for n = 3, compute 12 + 22 +
32 = 1 + 4 + 9 = 14). Here’s the code:

def sum_squares(n):

 result = 0

 for i in range(1,n+1):
 if i != 0:

 result = result + (i * i)
 return result

The function works fine as written, but it’s a little overcomplicated because:

	» The code includes an unnecessary check (if i != 0) because range(1, n+1)
would exclude 0 anyway.

	» The loop iterates one extra time (n+1) and compensates with logic, making it
harder to follow.

	» The variable update (result = result + (i * i)) is verbose.

Here’s an alternative function that accomplishes exactly the same thing as the
original function, but in a cleaner, simpler way:

def sum_squares(n):

 return sum(i ** 2 for i in range(1, n + 1))

CHAPTER 16 Top Ten Zen of Python Guidelines 321

The latter code uses the sum() function, which is a more Pythonic way to handle
summation than a loop. For a beginner, the second version may look advanced,
but it’s actually simpler when you learn basic Python constructs like range
and sum. It avoids extra logic and is easier to maintain.

Shortcut methods like sum() are sometimes referred to as idioms in Python.
Writing code that way is sometimes referred to as idiomatic programming. If
you’re interested in exploring other idioms, consider asking an AI for examples
of Python idiomatic programming.

Flat Is Better than Nested
As you probably know by now, code indentations are critical in Python. Unlike
other languages that use { and } or other characters to delimit blocks of code,
Python relies entirely on indentation level. At times, the indentations can become
so deep that it’s difficult to read and follow the code.

This principle means avoiding deeply nested layers of logic, such as multiple
levels of loops, conditionals, or function calls, because flat (less nested) code is
easier to read, understand, and maintain. Complex conditionals (nested if
statements) and nested loops often contribute to deep indentations, so we’ll look
at alternatives in the next sections.

Flattening nested conditionals
As an example of nested conditionals, consider this next function, named check_
discount(). It accepts some values and returns one of several possible messages
("You get a 20% discount", "You get a 10% discount", and so on) based on age:

def check_discount(age, member, items):

 if age >= 18:

 if member:

 if items > 5:

 return "You get a 20% discount!"

 else:

 return "You get a 10% discount!"

 else:

 return "No discount for nonmembers."

 else:

 return "No discount for under 18."

322 PART 5 The Part of Tens

The code works fine as is — there are no errors in the code — but the deep nesting
in all the if...else logic makes the code look complicated. A quick and easy way
to flatten (and simplify) that code is to simply not wait until the very end to return
a value. Use return statements inside the code to exit the function and return a
value when there is no need to check other possibilities. For example, applying
that principle to the preceding code yields the less complicated-looking
function here:

def check_discount(age, member, items):

 if age < 18:

 return "No discount for under 18."

 if not member:

 return "No discount for nonmember."

 if items > 5:

 return "You get a 20% discount!"

 return "You get a 10% discount!"

In this flat version, I use early returns (return statements inside the if block) to
exit the function as soon as a condition is met. Nonmembers are handled and dis-
missed on discovery. Then it’s just a matter of calculating the discount. The code
is flattened (and simplified) by checking each condition at the same level of
indentation. The logic is easier to follow because you don’t need to drill down
through nested if statements.

If your code is too deeply nested, it’s difficult to read. Consider copying and past-
ing that code into any AI and ask AI for tips on how best to flatten that code.

Using list comprehension
In Python, nested loops can create complex, deeply nested code. When dealing
with lists, Python’s list comprehension can greatly simplify things. List compre-
hension is a concise way to create a new list by applying an expression to each item
in an existing list (or another iterable, like tuple or range) and (optionally) filtering
items based on a condition. It’s a flat and readable alternative to using loops for
list creation. Here’s the syntax for list comprehension:

new_list = [expression for item in iterable if condition]

CHAPTER 16 Top Ten Zen of Python Guidelines 323

Here’s what each italicized name represents:

Code Description

new_list The resulting list created by the comprehension

expression The operation or value to include in the new list

item The variable representing each element in the iterable

iterable The source of data (for example, a list, tuple, range, or string).

condition Optional; a filter that includes only items where the condition eval-
uates to True (for example, item > 0).

Let’s look at an example of flattening a couple of nested loops. The following code
contains a list of lists. The code uses an outer loop to loop through each item in the
list as a whole. The inner loop deals with numbers in one sublist.

numbers = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

evens = []

for sublist in numbers:

 for num in sublist:

 if num % 2 == 0:

 evens.append(num)

print(evens)

The code works fine, as written. However, if you wanted to flatten things out to
avoid all the deep indentations, this code would do the trick:

Get all even numbers using a list comprehension.

numbers = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

evens = [num for sublist in numbers for num in sublist if num % 2 == 0]

print(evens) # Output: [2, 4, 6, 8]

The list comprehension flattens the nested loop structure into a single, concise
line. It is more Pythonic and easier to read when you’re familiar with the syntax.
The code creates a new list named evens, consisting of the even numbers from
all sublists:

evens = [num for sublist in numbers for num in sublist if num % 2 == 0]

That expression basically says, “For each num in each sublist in the list
numbers, add it to evens if the number is even (that is, if the remainder after divi-
sion by 2 is zero).” So, you get the new list without the indented nested loops.

324 PART 5 The Part of Tens

Sparse Is Better than Dense
This principle emphasizes that code should avoid unnecessary complexity or clut-
ter. For a beginning programmer, this means writing code that is straightforward
and focused, with only the essential elements needed to solve the problem. It
prioritizes clarity over cramming too much into a single line or function.

Think of it like writing a short, clear sentence instead of a long, wordy paragraph
to explain a simple idea. In programming, this may mean using a simple loop
instead of a nested mess of conditions or choosing a clear variable name over a
cryptic one. Let’s look at a simple task: calculating the square of numbers in a list.

numbers = [1, 2, 3, 4, 5]

squared = []

for i in range(len(numbers)):

 squared.append(numbers[i] * numbers[i])

print("The squares are: " + str(squared))

This code creates a list of numbers and an empty list named squared, and then it
uses a loop to append each number squared to the squared list before printing
the result.

The following code accomplishes the same thing but with less code.

numbers = [1, 2, 3, 4, 5]

squared = [num * num for num in numbers]

print(f"The squares are: {squared}")

In this second example, I’m using list comprehension rather than a loop to create
the list named squared, and an f string instead of clunky string concatenation to
display the result.

For sparseness, think in terms of making your code readable at a glance. If there’s
too much packed into a single line of code, consider breaking it into multiple lines.

This principle encourages you to write code that is as simple and clear as possible
while still getting the job done. As a beginner, focus on

	» Using clear variable names (for example, num instead of i)

	» Leveraging Python’s built-in features (like list comprehension) to avoid
verbose loops or conditions

	» Avoiding unnecessary steps or overcomplicated logic

CHAPTER 16 Top Ten Zen of Python Guidelines 325

By keeping your code sparse, you make it easier for yourself (and others) to under-
stand and maintain it later.

Readability Counts
This principle emphasizes that code should be written in a way that is easy for
humans to read and understand, prioritizing clarity over cleverness or complexity.
Think in terms of people reading your code (teammates in a programming team,
or your future self). If you work in a team, consider junior developers who are new
to the project and not already familiar with how your team does things. Focus on

	» Clarity over obscurity: Use meaningful variable names, clear structure, and
straightforward logic.

	» Human-first design: Code is read more often than it’s written, so optimize for
the reader’s comprehension.

	» Pythonic style: Follow all the guidelines in this chapter to develop a consis-
tent style like you’ve seen throughout this book.

For readability by humans, descriptive names for variables probably contribute
more to readability than any other factor. For example, take a look at the following
code. It’s not so clear or obvious what the code is doing:

def x(y):

 z=0

 for i in y:

 z+=i
 return z/len(y)

The purpose of the code becomes much more apparent when you replace short
one-letter variable names with more descriptive names:

def calculate_average(numbers):

 total = 0

 for number in numbers:

 total += number
 return total / len(numbers)

326 PART 5 The Part of Tens

Although that code is clear in terms of names of things, it’s quite a bit longer than
it needs to be. This next function performs the exact same task as the previous
one, using a single line of code within the function:

def calculate_average(numbers):

 return sum(numbers) / len(numbers)

The beauty of the last example is that it simply returns the sum of the numbers
passed in by the length of the numbers list, and the code makes that clear without
even using any comments.

You can think of code as basically an electrical circuit expressed in words. For
readability, think in terms of making those words easy for a human to read rather
than easy for a computer to read.

Special Cases Aren’t Special Enough
to Break the Rule

This principle emphasizes consistency in coding practices, even when you’re
tempted to make exceptions for unique situations. It urges beginning program-
mers to stick to established rules, conventions, or patterns in their code, even
when a specific situation feels like it deserves a unique solution. In programming,
consistency makes code easier to read, maintain, and debug.

In its simplest form, this includes following basic naming conventions, like snake
case for all variable names (all lowercase letters, underscores in place of spaces).
For example, you could easily make up some variables names on the fly, as fol-
lows, and your code would run perfectly fine:

Dog-Name = "Buddy"

CAT_AGE = 3

snakeLength = 5.2

In the long run, your code will be easier to read and understand if you always stick
to the snake case convention, like this:

dog_name = "Buddy"

cat_age = 3

snake_length = 5.2

CHAPTER 16 Top Ten Zen of Python Guidelines 327

There’s a general rule in Python that a function should always return a consistent
data type, such as always returning an integer or always returning a string. Often
when writing functions, people are tempted to take the lazy route for handling
errors, and just return an error message (string) if the data passed into a function
is no good. For example, the following square() function will return a number,
squared, as long as you pass in a positive number. But if you pass in a negative
number, the function returns a string containing the error message:

def square(num):

 if num < 0:

 return "Negative numbers not allowed" # Special case

 return num * num

The preferred way to handle this sort of thing is to always use exception handling,
where the function raises an error instead of returning a string.

def square(num):

 if num < 0:

 raise ValueError("Negative numbers not allowed")

 return num * num

Now the code is consistent with Python’s built-in functions: It either returns a
valid, consistent data type, or it raises an error when it can’t. You can use a try...
except block to call the function and handle any errors, as follows:

if __name__ == "__main__":

 number = -9

 try:

 print(f"{number} squared is {square(number)}")

 except Exception as e:

 print(f"Error: {e}")

This approach matches the kind of error handling you see throughout this book.
The function consistently returns a number (when it can); otherwise, it returns an
error with an explanation of what caused the error. Then the script ends gracefully
with no additional error messages.

The PEP 8 guidelines basically define the rules you don’t want to break. When you
need a quick summary, ask any AI to summarize the PEP 8 guidelines.

328 PART 5 The Part of Tens

Practicality Beats Purity
This principle emphasizes that real-world usability and effectiveness should take
precedence over rigid adherence to idealized rules, standards, or theoretical per-
fection. In other words, when you’re faced with a choice between a “pure” or
theoretically correct solution and a practical one that gets the job done efficiently,
the practical approach is preferred. Here’s a summary:

	» Purity refers to following strict rules, conventions, or theoretical ideals, such
as adhering to a specific design pattern, enforcing type safety everywhere, or
writing code that is academically “perfect.”

	» Practicality focuses on what works best given constraints like time,
resources, readability, or project requirements, even if it means bending rules
or using less “elegant” approaches.

A common mistake in this realm is trying to use a class, in honor of object-
oriented programming (OOP), to make the code look more modern, even when a
simple procedural approach (a function) is simpler and more straightforward for
the task at hand. For example, here’s a class named DataProcessor that returns a
list of numbers with each number squared:

Purist approach: Define a class

class DataProcessor:

 def __init__(self, data):

 self.data = data

 def process(self):

 return [x * 2 for x in self.data]

There’s nothing wrong with OOP. The code works fines, as shown, and an OOP
purist would likely see that as the “correct” way to write the code. To use the
class, a programmer would first need to create a DataProcessor object and then
calculate a result:

processor = DataProcessor([1, 2, 3])

result = processor.process()

Python supports OOP programming, but it doesn’t demand you use it. Here, a
function would likely be a cleaner, simpler approach involving less code and
complexity:

def process_data(data):

 return [x * 2 for x in data]

CHAPTER 16 Top Ten Zen of Python Guidelines 329

Using a simple function removes the added step of instantiating an object first.
You can get a result with a single line of code:

result = process_data([1, 2, 3])

The latter approach is more practical and avoids the “purity” of trying to strictly
follow a paradigm like OOP.

Using classes makes sense when creating application programming interfaces
(APIs) and larger modules that involve a lot of data input and output. There would
be nothing impractical about using a class that way. This principle is more about
using classes for small, general procedures that are easily handled with simple
functions.

Errors Should Never Pass Silently
Most of the scripts you see in this book use considerable exception handling to
prevent unforeseen problems from causing a program to crash unexpectedly. This
principle emphasizes writing robust, reliable programs that always handle errors
properly and gracefully. In other words, a script should always alert the user to
any error condition in a way that allows the user (or a programmer, if you’re still
writing the code) to remedy the situation.

Perhaps the best way to explain this is with a super simple example where a script
just asks for two numbers and then returns the result of the first number divided
by the second number:

Bad example: Ignoring errors

number1 = float(input("Enter the first number: "))

number2 = float(input("Enter the second number: "))

result = number1 / number2 # This crashes if number2 is 0.

print(f"Result: {result}")

The script works fine, as long as the user enters two valid numbers and the second
number isn’t zero — but that’s not the Pythonic way. There are two possible error
conditions here: The user doesn’t enter two valid numbers, or the user enters a
zero for the divisor number. Here’s the same code with exception handling added
to gracefully handle both kinds of errors:

try:
 number1 = float(input("Enter the first number: "))
 number2 = float(input("Enter the second number: "))

330 PART 5 The Part of Tens

 result = number1 / number2
 print(f"Result: {result}")
except ZeroDivisionError:
 print("Error: You cannot divide by zero!")
except ValueError:
 print("Error: Please enter valid numbers!")

Catching and explaining each potential error prevents the script from crashing
with an obscure error message.

Chapter 17 covers many common Python errors and includes examples of using
exception handling to manage those errors.

Let’s look at another example. Here’s some code to open a file named sample_
data.csv (in the same folder as the script). It does not handle potential errors.

Bad example: Ignoring errors

file_name = "sample_data.csv"

with open(file_name, 'r') as file:

 content = file.read()

print(content)

This script, like any script that accesses external files, is prone to problems where
the file doesn’t exist at the specified location, or the script needs to write some-
thing to a file but doesn’t have sufficient permissions from the operating system.
Adding some basic exception handling to the script solves both problems, inform-
ing the user exactly what will happen if the script is unable to perform its task:

try:

 file_name = "sample_data.csv"

 with open(file_name, 'r') as file:

 content = file.read()

 print(content)

except FileNotFoundError:

 print(f"Error: The file '{file_name}' was not found!")

except PermissionError:

 print("Error: You don't have permission to read this file!")

If you’re a beginning programmer, take some time to learn about exception han-
dling, and especially the more common exceptions. Chapter 3 describes the basics
of exception handling. Chapter 17 lists the ten most common error messages and
includes examples of using exception handling to prevent such errors from crash-
ing your code.

CHAPTER 17 Top Ten Python Error Messages 331

Chapter 17
Top Ten Python
Error Messages

When it comes to tech creativity, error messages are just a fact of life,
especially when you’re first learning Python and programming. Error
messages appear onscreen to alert you when something is wrong.

They’re usually good at pinpointing the problem, but not so good at telling you
what to do about it.

This chapter presents the ten most common Python error messages and what to
do to fix the problem and get back on track. Of course, you can also get help from
artificial intelligence (AI). When asking AI about a problem with your code, include
the code that’s giving you problems in your prompt. Often AI can spot and fix the
error quite quickly.

Command Not Found
When you’re first learning Python, you may often see the following error message
in VS Code’s Terminal:

command not found: python

IN THIS CHAPTER

	» Recognizing common error messages

	» Fixing common problems

	» Catching errors and exceptions as
your code is running

332 PART 5 The Part of Tens

This message is unnerving when you’re intending to write Python code. But keep
in mind that VS Code is a generic code editor, not tied to any one programming
language and not tied to any specific version of Python.

When you first open VS Code, in Windows, you can use py as a stand-in for the
python command; use python3 on macOS. For example, in the VS Code Terminal,
entering the command py -V on Windows or python3 -V on macOS will reveal the
current Python version.

To select a Python version choose View ➪   Command Palette. If you don’t see the
option to select an interpreter, type sel and then click Python: Select Interpreter.
Then click whichever Python version displays as Recommended (unless you regu-
larly work with multiple Python versions and have good reason to choose some
older version of Python).

Using the python command directly at the command line in VS Code won’t work
until you activate a virtual environment. If you’ve already created one, its folder
name will be visible in VS Code’s Explorer pane (see Figure 17-1). You don’t need
to create another virtual environment if the current project already has one.

If you haven’t yet created a virtual environment, create one. In Windows you can
enter the following command:

py -m venv .venv

In Linux or macOS, use the following:

python3 -m venv .venv

FIGURE 17-1:
A virtual

environment is
represented by a

folder in the
Explorer pane.

CHAPTER 17 Top Ten Python Error Messages 333

After the virtual environment is created, make sure to activate it. In Windows,
enter the following command in the Terminal:

.venv\scripts\activate

In Linux or macOS, enter this command:

source .venv/bin/activate

Both of these activation examples assume the virtual environment folder is named
.venv. If you’ve named yours differently, use your name in place of .venv in your
own command. If it still doesn’t work in Windows, try using activate.ps1 rather
than activate at the end of the command.

After it’s activated, the name of the virtual environment (.venv in this example)
will show as part of the command line in VS Code. VS Code will now recognize
python as a recognized command, and it will use whatever Python version is asso-
ciated with that virtual environment. So, on either macOS or Windows, you can
enter the following command in the Terminal to determine your working Python
version (make sure to use an uppercase letter V):

python -V

You can also get the current Python version using the following command (all
lowercase):

python --version

No Module Named . . .
If you run a Python and script and see this error message, it usually means you’re
trying to import a module that isn’t part of the Python standard library and isn’t
available in your virtual environment.

If you already have a virtual environment for your project, activate it (.venv/
scripts/activate on Windows, source .venv/bin/activate on macOS). Then
try running the script again. If it still fails, most likely you never used pip install
to install the module to your virtual environment. You can pip install it into
your active virtual environment, if you want, and that should resolve the problem.

334 PART 5 The Part of Tens

If you’ve never created a virtual environment for your project, you should do so
first. Then activate that environment, and pip install any dependencies you’ll
need that aren’t part of the Python standard library.

If you’re not sure about a module, you can always ask AI about it, including
whether you need to pip install it and how to write the import statement in
your code.

A related error, ModuleNotFoundError, is covered later in this chapter. You may
want to look at that section for clues as well.

SyntaxError
In Python, a SyntaxError is typically a typographical error in your code.
A SyntaxError isn’t an exception that you want to catch. Instead, you need to
fix each SyntaxError as it occurs. Often, VS Code will show a wavy red underline
or other marker to show that the error is located in the code. The error message
itself may provide additional information.

Here’s a simple function that, at first glance, may seem perfectly legitimate:

def calculate_sum(a, b)

 result = a + b
 return result

When you run the code that contains that function, you’ll get an error message
that reads "SyntaxError: expected ':'". Python syntax requires that you end a
line that starts with def with a colon (:), and the sample function is missing that.
The correction here is to simply add the colon where it’s required, as shown here:

def calculate_sum(a, b):

 result = a + b
 return result

Here’s another example where the error may not be apparent at first glance:

def greet(name):

 message = "Hello, " + name +
 return message

CHAPTER 17 Top Ten Python Error Messages 335

Running that code produces the error "SyntaxError: invalid syntax". VS Code
also tells me that the error is in line 2, and it shows a wavy red line at the end of
that line. The problem here is that the last + isn’t appending anything to the
string, so that last + should be removed. The corrected code is simply as follows:

def greet(name):

 message = "Hello, " + name
 return message

VS Code usually shows a red wavy line near bad code that may contain a
SyntaxError. Touching the mouse pointer to that wavy line provides some
information about the error. You can then click Quick Fix (if available) near the
error text to get help fixing the problem.

NameError
In Python, a NameError occurs when you call something (a function, a variable,
or whatever) by name, but that name doesn’t exist. Take a look at the fol-
lowing code:

def sum_nums(numlist):

 return sum(numlist)

if __name__ == "__main__":

 numlist = [34, 7, -5, 22.4]

 result = sumnums(numlist)

 print(result)

Running that code displays an error message that reads:

NameError: name 'sumnums' is not defined. Did you mean: 'sum_nums'?

The error is that the first line defines the function name as sum_nums (with an
underscore). The subsequent code result = sumnums(numlist) attempts to call
sumnums (no underscore), so that name isn’t recognized. The solution is to simply
call the function by its defined name, result = sum_nums(numlist).

Names are case-sensitive in Python. When calling a function, make sure to use the
same uppercase/lowercase letters you used in the def statement when creating
the function.

336 PART 5 The Part of Tens

TypeError
In Python, a TypeError occurs when you try to perform an operation on a data
type that isn’t supported for that operation. Think of it as Python saying, “I don’t
know how to do this with these types of values!” It’s one of the most common
errors you’ll encounter when first learning Python.

Confusing strings and numbers are one of the most common TypeError mistakes.
Here’s a simple example:

Code that causes TypeError

x = "5"

y = 10

result = x + y

Running that code produces the following error:

TypeError: can only concatenate str (not "int") to str

The problem here is that the x variable is defined as a string (because it’s enclosed
in quotation marks). Python doesn’t allow you to join a string to a number. You
would either have to make both x and y numbers (by removing the quotation
marks around 5) or make them both strings, as in "5" and "10".

Here’s another example of a TypeError:

extended_price= 98.99

print (len(extended_price))

The error message for this code is TypeError: object of type 'float' has no
len(). The variable extended_price is the float data type, because its value is a
number with a decimal point, not enclosed in quotation marks. The len() func-
tion returns the length of a string and causes an error if you try to get the length
of a number.

If you’re going to allow users to put in their own data while running your code,
you can use both TypeError and ValueError in a try...except block to catch
either type of error. (A ValueError is the correct data type, but a bad value, such
as a negative number when a positive number is expected.) The following code
shows an example where the user can input a total sale price and tax rate. The
code then calls a function named total_with_tax to add sales tax to the total, but
notice the try...except block near the end, to catch both ValueError and
TypeError exceptions if they arise:

CHAPTER 17 Top Ten Python Error Messages 337

Function expects floats and returns a float

def total_with_tax(price: float, tax_rate:float) -> float:

 # Require positive numbers for price and tax_rate

 if price < 0 or tax_rate < 0:

 raise ValueError("Price and tax rate must be non-negative numbers.")

 # Calculate total price with tax if no error.

 total_price = price * (1 + tax_rate)
 return total_price

if __name__ == "__main__":

 try:

 total_sale = float(input("Enter the total sale amount: "))

 tax_rate = float(input("Enter the tax rate (0.065 for 6.5%): "))

 # Get total with sale tax added

 total = total_with_tax(total_sale, tax_rate)

 print(f"The total price with tax is: {total:.2f}")

 except ValueError:

 print("Invalid input. Please enter numeric values for price and

tax rate.")

 except TypeError as e:

 print(e)

IndexError
In Python, an IndexError occurs when you try to access an element in a sequence
(like a list, tuple, or string) using an index that’s out of range. In simpler terms,
you’re trying to reach a position that doesn’t exist in the sequence. For example,
let’s say you have a list of five items, and your code asks for the sixth item. Python
will throw an IndexError exception because there is no sixth item.

In Python (and most programming languages), the first item in a list is always
item 0 (zero), not 1 (one). We humans don’t usually think that way. For example,
you may think the following code is perfectly legitimate:

fruits = ['Apple', 'Banana', 'Cherry']

print(fruits[3])

Running that code produces the following error message:

IndexError: list index out of range

338 PART 5 The Part of Tens

You would expect fruits[3] to be Cherry, the third item in the list. But that’s not
how Python sees it. Python sees it like this:

fruits[0] = 'Apple'

fruits[1] = 'Banana'

fruits[2] = 'Cherry'

There is no fruits[3] as far as Python is concerned. That’s why the code gener-
ates an error.

One way to get around that problem is to try to avoid using loops with range() or
some other kind of counter when working with a list. The simplest way to loop
through a list using this syntax, which will never encounter an IndexError (because
it repeats once for each item in the list and knows to start at 0) is as follows:

fruits = ['Apple', 'Banana', 'Cherry']

for fruit in fruits:

 print(fruit)

You can do that more compactly using list comprehension like this:

fruits = ['Apple', 'Banana', 'Cherry']

[print(fruit) for fruit in fruits]

If you need to keep a counter going as you’re moving through a list, you can use
Python enumeration, which allows you to automatically assign a number to each
item in a list. For example, look at this code:

my_list = ['apple', 'banana', 'cherry']

for index, value in enumerate(my_list, start=1):

 print(f"Index: {index}. {value}")

The syntax here uses a for loop with the name index (which is a counter), and
value (an item from the list). The word enumerate lets Python know you want
index to be a counter. The name my_list is a reference to the original list. The
start=1 lets Python know you want to start counting at 1. The output from that is:

1. apple
2. banana
3. cherry

Python (and most other programming languages) start lists at 0 rather than 1,
because it’s more efficient for computers to handle lists that way. If you use
enumeration without start=1, items will be numbered starting at 0.

CHAPTER 17 Top Ten Python Error Messages 339

KeyError
In Python, a KeyError happens when you try to access a key in a dictionary that
doesn’t exist. Think of a dictionary like a real-world dictionary: You look up a
word (the key) to find its definition (the value). If the word isn’t in the dictionary,
you get nothing. In Python, trying to access a nonexistent key raises a KeyError.

Here’s a simple example where a dictionary named my_dict contains two keys —
one named "name" and the other named "age". Each of those keys has a value
assigned to it — "Annabelle" for "name", and 65 for "age". That code is then
followed by three print statements attempting to display data from the
dictionary:

A simple dictionary

my_dict = {"name": "Annabelle", "age": 65}

print(my_dict["name"])

print(my_dict["age"])

print(my_dict["gender"])

Running that code produces the following output:

Annabelle

65

...

KeyError: 'gender'

The KeyError happens because there is no key named "gender", just keys named
"name" and "age".

If you’re working with keys that are generated by other code, you don’t always
have great control over the dictionaries. You can use the .get() method to request a
key value and specify a default if the key doesn’t exist. That way, you always get
some value for a key and don’t risk crashing the entire script. Here’s a modified
version of the code, where the "gender" value becomes "not specified" if the
"gender" key is missing.

A simple dictionary

my_dict = {'name': 'Annabelle', 'age': 65}

print(my_dict['name'])

print(my_dict['age'])

print(my_dict.get('gender', 'not specified'))

340 PART 5 The Part of Tens

Now take a look at the following code:

A simple dictionary

my_dict = {'name': 'Annabelle', 'age': 65}

print(my_dict[name])

print(my_dict[age])

At first glance, that code may look perfectly fine. But running it produces a
NameError. Why? Because the print statements treat name and age as variable
names (no quotation marks), not key names. You can easily fix that error by add-
ing quotation marks:

print(my_dict['name'])

print(my_dict['age'])

If you’re working with a lot of imported JavaScript Object Notation (JSON) data
that isn’t always as reliable as you’d like, and you want to catch KeyError with a
try...except block, you can use the standard syntax for try...except, instead
of defaulting to some other value:

A simple dictionary

my_dict = {'name': 'Annabelle', 'age': 65}

print(my_dict['name'])

print(my_dict['age'])

try:

 print(my_dict['gender'])

except KeyError:

 print('No gender specified')

This is useful when you expect a key may be missing and you want to handle the
error without crashing your program and without presuming a default value for
the missing key.

AttributeError
In Python, an AttributeError occurs when you try to access or use an attribute
(method or property) that doesn’t exist on an object. In Python, objects have attri-
butes (data) and methods (functions) associated with their class. Common causes
of errors include the following:

CHAPTER 17 Top Ten Python Error Messages 341

	» Misspelling an attribute or method name

	» Accessing an attribute that doesn’t exist for the object’s type

	» Using a method or attribute on the wrong type of object

	» Forgetting to initialize an attribute in a class

Here’s a super-simple example of creating a list and then trying to add another
item to the list:

my_list = [1, 2, 3]

my_list.add(4)

Running that code generates the following error message:

AttributeError: 'list' object has no attribute 'add'

In other words, you can’t use the word add. The attribute for adding a new item to
a list is append(). So, correcting the error in this case is a simple matter of chang-
ing add to append, as follows:

my_list = [1, 2, 3]

my_list.append(4)

In Python, you can create your own classes, with attributes of your own choosing.
Here’s an example of a custom class I’ve created named Car. Each instance of a Car
object can have make, model, and year attributes:

class Car:

 def __init__(self, make, model, year):

 self.make = make

 self.model = model

 self.year = year

With that code, you can create objects using a syntax like my_car = Car("Toyota",
"Camry", 2020). Let’s say you then try to execute this command:

print(f"My car is a {my_car.year} {my_car.make} {my_car.modal}.")

That code would fail with the following error message:

AttributeError: 'Car' object has no attribute 'modal'. Did you mean: 'model'?

342 PART 5 The Part of Tens

The problem here is that in the class, self.model defines the attribute name as
model (with an e). The faulty code attempts to access my_car.modal (a misspell-
ing of model).

If you need a quick reminder of attributes for an object, you can always ask AI. Just
make sure to use the terms Python and attribute in your prompt, such as “What are
attributes of Python lists?” or “What are attributes of Python dictionaries?”

ModuleNotFoundError
The ModuleNotFoundError happens when you try to import a module that doesn’t
exist, either because you misspelled the filename or because the module isn’t part
of the Python standard library and you haven’t yet installed the module to the
active virtual environment. This error can also happen when a filename in the VS
Code Explorer pane is the same as a module name, but with a .py extension. For
example, maybe you’re trying to use matplotlib as a module, but you have a file
named matplotlib.py in the current folders.

The simplest example could be a misspelling or case error. For example:

import OS

That one line of code can fail because you need to spell the name with all lower-
case letters, as in:

import os

Here’s another example where the code looks perfectly fine, but it generates a
ModuleNotFoundError:

import requests

Here the problem is likely that requests isn’t part of the Python standard library.
The requests module needs to be installed before you use it in your code. If you
haven’t already done so, you should create a virtual environment. Activate your
virtual environment, and then enter the command pip install requests to
bring that module into the virtual environment.

If you’ve created a virtual environment in the past, activate the virtual environ-
ment, and then enter the command pip list in the Terminal. If you don’t see
requests listed in the results, pip install requests into the active virtual
environment.

CHAPTER 17 Top Ten Python Error Messages 343

A ModuleNotFoundError can happen when a filename in the current folder
matches a module name. That name may be followed by description, something
along the lines of:

No module named 'matplotlib'; 'matplotlib' is not a package

Check the filenames in the VS Code Explorer pane to see if any of them matches
the module name in the error message. For example, Figure 17-2 shows a file
named matplotlib.py. That filename conflicts with the matplotlib import,
which is why the error says it’s not a package. To fix this, rename matplotlib.py
so it doesn’t match the module name — but make sure to keep the .py filename
extension.

FileNotFoundError
If your Python code needs to access a file, but that file can’t be found in the speci-
fied location, Python throws a FileNotFoundError. Here are the most common
causes of this error:

	» You misspelled the filename in your code.

	» The file doesn’t exist in the specified directory.

Here’s a line of code that tries to open a file named data.json from the current
working directory (the same directory that contains the script that contains
the code):

with open('data.json', 'r') as file:

FIGURE 17-2:
Make sure
filenames

don’t match
module names.

344 PART 5 The Part of Tens

Keep in mind that file and folder names are case-sensitive on macOS and Linux,
so watch your uppercase/lowercase letters, too!

The current working directory is assumed because no other directory is specified
in the path. If the file is in another location, you can specify the path using the
proper syntax for your operating system. For example, if the file is in a folder
named assets on a disk or USB drive in drive D: on Windows, you could write the
code like this:

file_path = r"D:\assets\data.json"

with open(file_path, 'r') as file:

On macOS, that would look like this (assuming the name of the USB drive is MyUSB):

file_path = "/Volumes/MyUSB/assets/data.json"

with open(file_path, 'r') as file:

On Linux, the path may look more like this (but replace Alan with your username
and MyUSB with the name of your USB drive):

file_path = "/media/Alan/MyUSB/assets/data.json"

with open(file_path, 'r') as file:

Working with external files can also produce PermissionError, which happens
when you try to write to a file that’s open in read-only mode or a file that’s
already open in some other app. To fix the error, you need to set permissions on
the file, or its directory, so your script has whatever rights it needs. Typically, you
can set permissions on a file by right-clicking the file’s icon and choosing Proper-
ties ➪   Security on Windows, choosing Get Info ➪   Sharing & Permissions on macOS,
or using the chmod command on Linux.

In Python code that works with files, you’ll often see exception handlers in place
to handle both FileNotFoundError and PermissionError problems, as well
as a generic handler like this:

import json

def read_json_file(filepath):

 try:

 with open(filepath, 'r') as file:

 data = json.load(file)

 print("File loaded successfully.")

 return data

CHAPTER 17 Top Ten Python Error Messages 345

 except FileNotFoundError:

 print(f"Error: The file '{filepath}' was not found.")

 except PermissionError:

 print(f"Error: Permission denied when trying to read '{filepath}'.")

 except Exception as e:

 print(f"Unexpected error: {e}")

Example usage

file_path = "data.json"

content = read_json_file(file_path)

It’s a good idea to get in the habit of always including exception handling for
errors related to files outside your own code, because in many environments you
may not have control over what’s happening in those other directories.

IndentationError
Many programming languages use different kinds of braces and brackets
to delimit blocks of code within a larger script. For example, in the following
JavaScript code, the code inside the greet() function is surrounded by curly
braces:

function greet(name) {

 alert("Hello " + name);
}

// Call the function with the name "wilma"

greet("wilma");

Python doesn’t use braces or brackets to define blocks of code. Instead, it relies
solely on indentations to determine what’s inside a block of code. For example,
the following greet() function contains the one line of print code, as indicated
by the indentation. The remaining code is outside the function, because it’s
not indented:

def greet(name):

 print("Hello " + name)

Call the function with the name "wilma"

greet("wilma")

346 PART 5 The Part of Tens

When you see IndentationError in a script, it means Python can’t quite figure
out what to do with your code. In some cases, the problem may be easy to identify:

def greet(name):

print("Hello", name)

When you understand that the def command defines a function, and only indented
code below that line is part of the function, you can see the problem here. There is
no indented code under def, so nothing is in the function. The exact error message
for that error reads like this, so you know the problem starts below a function
definition line (which always starts with def):

IndentationError: expected an indented block after function definition

Loops and if statements also require indentation below the first line. For exam-
ple, here’s an example of proper indentation for a loop (starting with for) and an
if inside the loop (starting with if):

Create a list of numbers

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Loop through each item in the list

for number in numbers:

 # Check if the number is odd

 if number % 2 != 0:

 print(f"{number} is odd")

The code works fine as written. But the following code would generate an
IndentationError because it lacks indentations under the for and if statements:

Create a list of numbers

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Loop through each item in the list

for number in numbers:

Check if the number is odd

if number % 2 != 0:

print(f"{number} is odd")

Inconsistent indentation using the Tab key sometimes and spaces at other times,
can also lead to IndentationError problems. The PEP 8 guidelines generally recom-
mend using four spaces for indentation level. In VS Code, pressing Tab also indents
by four spaces. Try to be consistent when indenting (for example, always use Tab
in VS Code) to minimize the likelihood of messing up your indentations.

Index 347

Index
Numerics
*.tmp, 96–98
comment, 36, 78
+ operator, 48
= operator, 48

A
absolute versus relative paths, 72–73
Activity Bar, in VS Code, 17–18
add_content() function, 163, 167, 172
Advanced Python Scheduler. See

APScheduler module
Amazon Simple Email Service, 236
Amazon Web Services (AWS) Secrets

Manager, 184
ampersand (&) for and, 58
angle brackets, 153
anonymous functions, 137
APIs (application programming interfaces), 9,

229, 243, 329
accessing free AI through, 277–282
acquiring API keys and modules, 243–244
creating .gitignore file, 184–185
getting Instagram API access, 251
interacting with, 181–196
making API requests, 191–193
obtaining API keys, 181–182
other ways to secure API keys, 184
parsing API responses, 193–194
Representational State Transfer (REST)

APIs, 190–194
reviewing complete REST API script, 194–196
safely storing API keys, 182–185
using API key in script, 185
See also JavaScript Object Notation (JSON)

apostrophes, 36, 39

Apple Intelligence, 2
Apple M series, 12
Apple Safari, 197, 199–200
application programming interfaces

(APIs). See APIs
APScheduler module, 265–270

using with dates and times, 268–270
using with intervals, 267–268

arithmetic and string operators, 47–48
array, 39
artificial intelligence (AI), 2, 42, 196, 217, 241, 270

accessing API, 277–282
building simple local chatbot, 284–286
chatbots, 9, 19, 284
conversational chatbot, creating, 287–290
downloading models with Ollama, 283–284
image generator, developing, 290–308
installing and running Ollama, 283
integrating with, 277–308
REST APIs, 191
use of, 8
warming up to local chatbot, 282–286

assignment operators, 48–49
AttributeError, 340–342
auto screenshot script, 158

B
background process, 283
backing up files, 98–103

copying files with Python, 101–102
creating folders from Python, 101
personalizing the script, 102–103

backslashes, 26, 71, 73–74
backup_files() function, 100
bailing out of loops, 53–54
Bash, 27

348 Python Automation For Dummies

BeautifulSoup module, 213
boilerplate text, 153–154
Books to Scrape website, 217–218
Boolean (bool) data type, 39
break statement, 53
bulk-renaming files, 87–91
buzzwords, 70–74, 187

C
calculate_file_hash() function, 106
Cascading Style Sheets (CSS), 15, 218
case statement, 58
central processing unit (CPU), 263
ChatGPT, 2, 249, 284
chunk, 106
classes and objects, creating, 61–62
Claude, 284
ClickSend, 237
code editor, choosing, 15–33
colon, 40, 51, 334
color models, 132
comma, 39, 40–41
command line interface (CLI), 22, 283
Command Not Found (error message), 331–333
command prompt, 23
comments, 316
compress_files() function, 109–112
compression parameters, setting, 113
constant, 182
content, defining

creating, for posts, 249–250
for PDF, 172
for Word, 163–164
for workbook, 167–168

continue statement, 53
controls, on web pages, 200–201
conversational chatbot, creating, 287–290
converting image file types, 129–133
Copilot, 2, 17, 284
.copy() method, 102
copying files with Python, 101–102
Courier, 237

create_interface() function, 305
crop() method, 125
cropping images, 127–128
curly braces, 10, 40, 185, 345
cv2 module, 119

D
data dictionaries, 41
data extraction

automating, 222–228
from web page, 217–222

data.json file, 189–190
data, manipulating with operators, 47–50
data types, 37

Boolean (bool), 39
nothing (None), 41–42
for numbers, 37–38
string (str), 38–39
tuple (tuple), 40

dates and times, dealing with, 45–47
datetime module, 45
decision-making (branching), 55
if...else, 55–56
match, 57–58
ternary operator, 56–57

decompress_files() function, 114–117
DeepSeek-R1, 282
def statement, 58–59, 346
DELETE request, 191
deletion

of duplicate files, 108
identifying old files, 96
matching the file pattern, 96–97
of old and temporary files, 93–98
sending files to the trash, 97
using the deletion script safely, 97–98

dictionary (dict) data type, 40–41, 187
digital rights management (DRM) systems, 135
directives

formatting used with Python f-strings, 44
for .strftime() formatting with date time

values, 46–47

Index 349

directories (folders) and files. See files and folders,
automating

divide_numbers() function, 66
dotenv module, 230, 237, 246
drives, 71–72
.dump method, 188
dunder (double underline) names, 66
duplicate files, 103–109

calculating file hash, 106
deleting, 108
finding, 107–108
tweaking the find duplicates script, 108–109

dynamic typing, 315

E
ehlo (Extended Hello), 233
elif statement, 56
else statement, 53, 54, 63, 66
email, sending automatically, 229–236

collecting account information, 230
creating .env file, 230–231
creating script, 231–234
putting email recipient addresses in file, 235
sending HTML mail, 234–235
throttling problems, dealing with, 236

.env file, 182, 183, 230–231, 237, 245,
252, 278, 302

environment variables, 184
EOFError, 63
error messages, Python, 331–346

AttributeError, 340–342
Command Not Found, 331–333
FileNotFoundError, 343–345
IndentationError, 345–346
IndexError, 337–338
KeyError, 339–340
ModuleNotFoundError, 342–343
NameError, 335
No Module Named . . ., 333–334
SyntaxError, 334–335
TypeError, 336–337

errors, handling, 316–317
Escape key, 150–151, 152
Excel. See Microsoft Excel
except: and try: statements, 53, 63,

64–66, 263, 340
Exception as e, 64
exception handling, 63–66, 87, 316–317, 329–330
exit_script function, 154–155
extract_frames() function, 133–135

F
file management

automating, 93–117
backing up files, 98–103
compressing files, 109–113
decompressing files, 114–117
deleting old and temporary files, 93–98
finding and removing duplicate files, 103–109

FileNotFoundError, 63, 343–345
file.path.match(pattern) syntax, 97
files and folders

automating, 69–91
drives, 71–72
File Explorer directories, 70
moving files with shutil, 86–87
navigating, 74–81
organizing, by type, 81–87
Practice folder, used to work on file scripts

safely, 74
renaming files, 87–91
script customization, 87
subfolders, 81
using mkdir for subfolders, 86
See also file management; image and video files

finally (optional), 63, 66
find_duplicates() function, 107–108
.find_element() method, 207
Finder, 70
flip() method, 125
flipping images, 126–127
floating point, 37

350 Python Automation For Dummies

folder creation, for new project, 19–24
folders and files. See files and folders, automating
for loops, 51–52, 79, 137, 300, 338
forms, automating web browser to filling,

197–201
forward slashes, 26, 72
frame extraction, from video files, 133–138
f-string, 42–44
functions, in Python, 58–61

G
Gemma 3, 282
generate_image() function, 294, 300–301
generated image onscreen, showing,

295–301
get_index_price() function, 228
GET request, 191
.gitignore file, 184–185, 231
Google Chrome, 197, 198, 202, 204
Google Cloud Secret Manager, 184
Google Gemini, 284
gradio_generate() function, 299–300
gradio library, 295–300, 302, 305–306
graphics processing unit (GPU), 12
Grok, 249, 284
Groq, 277–278
GroqFreeClient class, 280–281

H
handling errors, 316–317
hardware requirements

identifying, 11–12
for VS Code, 15

hashing files, 103–104
hashlib module, 104
Hootsuite, 244
hotkeys, pressing, 148
Hugging Face, 301–308
Hypertext Markup Language (HTML), 15, 200,

213, 234–235
Hypertext Transfer Protocol (HTTP), 190

I
idiomatic programming, 321
id, of control, 200
if...else statement, 42, 55–56
if statement, 78, 85, 112, 137, 226
image and video files

automating, 119–138
converting files with Python, 131–132
converting image file types, 129–133
customizing the image processor, 128–129
extracting frames from video files, 133–138
personalizing the conversion script, 132–133
resizing, rotating, flipping, and cropping

images, 120–129
image, creating watermark, 176
image generator, developing AI, 290–308

hitting up Hugging Face, 301–308
showing generated image onscreen, 295–301

image.transpose(), 127
ImportError, 63
import statement, 28, 29, 66, 69, 77, 274
indentation, 11, 51, 55, 321
IndentationError, 345–346
IndexError, 337–338
.info() method, 62
Instagram API access, 251
instance variables (properties), 61
integer, 37
is_, 39
.iterdir() (iterate directory) method, 79

J
Java, 61
JavaScript, 8, 10, 15, 185
JavaScript Object Notation (JSON)

filling text boxes from, 208–211
handling JSON data, 185–190
parsing and serializing JSON data, 187–188
reading and writing JSON files, 188–190

job() function, 262, 264, 266
json module, 187

Index 351

K
keyboard shortcuts, creating custom key

combinations, 151–155. See also mouse
and keyboard

.keyDown() method, 149
KeyError, 339–340
key parameter, 151
keystrokes, detecting, 150–151
.keyUp() method, 149
key–value pairs, defining in dictionaries, 40–41
keyword_list variable, 257

L
LA (Luminance, Alpha), 132
LANCZOS, 126
Lanczos, Cornelius, 126
large language models (LLMs), 282
libraries, 9
Linux

GUIs for, 150
Python on, 13–14
shortcut keys for, 150

list comprehension, 322–323
loops, 51–55

bailing out of, 53–55
for loops, 51–52, 79, 137, 300, 338
while loops, 52, 226

lxml tool, 213, 216

M
Mac computers, 140
macOS, 71, 149
Mailgun, 236
main() function, 66, 79, 91, 97, 128, 138, 162, 167,

172, 204, 289
matches_pattern variable, 97
match statement, 57–58
matplotlib module, 257
MD5 hash, 106
Meta AI, 284
Meta for Developers website, 251, 254

Meta Llama 3, 282
.methodname() syntax, 125
metrics variable, 254
Microsoft Azure Key Vault, 184
Microsoft Edge, 197, 198
Microsoft Excel

automating, 164–168
defining content for workbook, 167–168
specifying workbook, 167

Microsoft Word
automating, 159–164
defining Word content, 163–164
naming, 162

mkdir, using for subfolders, 86
ModuleNotFoundError, 63, 334, 342–343
modules, installing, 28–29
mouse and keyboard

automating, 139–158
controlling the mouse speed, 141–142
detecting keystrokes, 150–151
finding the screen locations of things, 142–144
granting permissions on Mac, 140
keyboard shortcuts, creating custom key

combinations, 151–155
screen coordinates, understanding, 141
screenshots, automating, 155–158
stopping wild mouse, 142
trying out mouse control, 144–146
typing text with Python, 146–150
using mouse control with specific app, 144

Mouse Info app, 143
moving files with shutil, 86–87
multiple text boxes, filling on web page, 204–208

N
NameError, 335
nested conditionals, 321–322
nested object, 186
No Module Named . . . (error message), 333–334
nothing (None), 41–42, 97
numbers, working with, 37–38

352 Python Automation For Dummies

O
object, 61
object-oriented programming (OOP), 61, 328
Office

automating, 159–177
See also Microsoft Excel; Microsoft Word; PDFs

old files, identifying, 96
Ollama (open-source tool), 282

downloading AI models with, 283–284
installing and running, 283

OpenCV (Open Source Computer Vision
Library), 135, 138

openpyxl module, 164, 168
OpenWeatherMap REST API, 195
operating system, detecting, 149–150
operators, manipulating data with

recognizing other operators, 49–50
using arithmetic and string operators, 47–48
using assignment operators, 48–49

organize_files() function, 84
organizing files by type, 81–87
os module, 69, 74, 280
output, formatting, 42–44

P
parameters, defining default values for, 60
parentheses, 10, 11, 60
parsing

API responses, 193–194
JSON, 187–188
web page, 216–217

PATCH request, 191
pathlib library, 69, 74, 86, 104
paths, 71–72

absolute versus relative, 72–73
backslashes in Windows paths, 73–74

pathutil module, 90, 93, 97, 116
PDFs

creating and opening, 168–173
defining content for, 172
identifying, 172–173
watermarking, 173–177

PEMDAS, 47, 48
PEP 8 guidelines, 36–37, 315, 327, 346
performance metrics, tracking, 251–255
PermissionError, 63
Photopea editor, 176
PIL (Python Imaging Library), 119
Pillow module, 119, 125, 173
pipe (|) for or, 58
pip install commands, 28–29
pixel, 141
Plivo, 237
Pollinations.AI, 291, 293
Portable Document Formats (PDFs). See PDFs
POST request, 191
print() command, 32, 42, 84, 87, 98, 132
programming languages, choosing, 8–10
project folder, in VS Code, 20–21
PUT request, 191
py, 23, 30
PyAutoGUI (Python Automation for Graphical User

Interfaces), 139, 141–142, 146–149
pynput module, 150, 152
PyPDF2 module, 168–169, 173
Python

automating performance metrics with, 251–255
automating scripts, on schedule, 271–276
automating with, 7–14
basics for automation, 35–66
choosing programming languages, 8–10
classes and objects in, 61–62
code as case-sensitive, 23, 335
comments, understanding, 35–36
compressing files with, 112
converting image files with, 131–132
copying files with, 101–102
creating folders from, 101
defining functions, 58–61
dictionary, 40–41, 187
download options from website, 13
error messages, 331–346
examples of good and bad filenames, 30
extensions installing, 18–19
getting, 11–13

Index 353

guidelines, 311–330
hardware requirements, identifying, 11–12
idiomatic programming, 321
installing, 12–13
interpreter, 21–22
on Linux, 13–14
module, 28–29
OpenCV library for, 135
opening existing project, 33
operators, 47–50
renaming files with, 90
running scripts, 32–33
scripts, writing and running, 30–33
syntax, understanding, 10–11
taking screenshots with, 157–158
type hints, 315–316
typing text with, 146–150
unzipping files with, 116–117
uses indentation, 11
variables and data types, mastering, 36–42
version

checking, 23–24
selecting, 21–22

writing scripts, 30–32, 42
See also specific entries

python3, 23
python3 -m venv .venv command, 25, 332
python-docx module, 159, 163
python-dotenv module, 280
Python Enhancement Proposal (PEP), 37
python -m venv command, 25, 332
pytrends module, 258

Q
queue, 263
quotation marks, 36, 38, 42, 147, 186, 233–234
Qwen, 282

R
random access memory (RAM), 12
raster images, 129
raw string, 80

Recommended Python interpreter, 21–22
Recycle Bin, 93, 97–98
relative/absolute paths, 72–73
renaming files, 87–91

with Python, 90
using the bulk renaming script, 91

reportlab module, 168–169, 173
Representational State Transfer (REST)

APIs, 190–194
making API requests, 191–193
parsing API responses, 193–194
reviewing complete script, 194–196

resize() method, 125
resizing images, 125–126
return statement, 59, 84
RGB, 132
RGBA, 132
rglob (recursive global search), 78
root folder, 20, 26, 31
rotate() method, 125
rotating images, 126
r, string with, 80
Run Python File, 32–33, 143

S
safe_delete_to_trash() function, 98
.save() method, 132
schedule module, 261–265
scheduling tasks, 261–276
APScheduler module, 265–270
automating Python scripts, 271–276
for intervals, 264–265
running scripts as imports, 274–276
running scripts as subprocesses, 271–274
schedule module, 261–265

scrape_books() function, 221
screen coordinates, understanding, 141
screen scraping. See web scraping
screenshots

automating, 155–158
personalizing the auto screenshot script, 158
taking, with Python, 157–158

354 Python Automation For Dummies

script customization, 87
Secure Sockets Layer (SSL), 230
selenium module, 197
semicolon, 10
send2trash module, 93–95, 97, 104, 108
SendGrid, 236, 237
serializing JSON, 187–188
Short Message Service (SMS) messages, 229.

See also text messages
shutil (shell utilities) module, 69, 82–84,

86–87, 93, 99
Simple Mail Transfer Protocol (SMTP) server

address, 230, 236
Sinch, 237
single-quotes, 186
SMS messages, 229. See also text messages
smtp module, 229
SMTP port, 230
Snipping Tool, 155
social media

acquiring API keys and modules, 243–244
analyzing trends using Python, 255–258
automating, 243–258
creating content for posts, 249–250
posting, automating, 244–249
script customization, 249
setting up project, 245–248
tracking performance metrics, 251–255

special keys, pressing, 148
square brackets, 39, 40, 113
start_recording() script, 157
streaming outputs, 300
strftime() formatting, 46–47
string(s) (str) data type, 38–39
Submit button, clicking on web page, 207–208
subprocess module, 271–274
syntax, 10
SyntaxError, 334–335
system specs, 12

T
take_screenshot() function, 157–158
Telnyx, 237

Terminal
command prompt in, 26
in VS Code, 22–23

ternary operator, 56–57
.testzip() method, 116
text (strings), 38–39
text boxes

filling, from file, 208–211
finding, on web page, 200–201, 204–208

text messages
defining recipient list and message, 239
sending automatically, 236–241
storing recipient numbers, 239–241
storing SMS account information, 237–239

timeframe variable, 257
time module, 146
tinyllama model, 285
TIOBE Index, 8
Transport Layer Security (TLS), 230
trash_duplicates() function, 108
trash, sending files to, 97
try: and except: statements, 53, 63, 64–66,

263, 327, 340
tuples, 40
tweepy module, 246
Twilio, 229, 236–237
TypeError, 63, 336–337
type hints, 60–61, 315–316
typing text with Python, 146–150

controlling the typing speed, 147
detecting the operating system, 149–150
pressing hotkeys, 148–149
pressing special keys, 148
typing long passages of text, 147–148

tzdata/holidays modules, 225

U
unary, comparison, and other operators, 49–50
Uniform Resource Locator (URL), 190, 192
unzipping files, with Python, 116–117
User-Agent header, 215–216
User class, 61–62
uuid4() method, 294

Index 355

V
ValueError, 64, 65
values, and variable, 37, 39, 42
van Rossum, Guido, 37
variable names, 36–37
variables and data types, mastering, 36–42
.venv module, 25–27
video files

extracting frames from, 133–138
importing modules for video extraction, 135–136
looping through video, 136–137
tweaking the video conversion script, 138

virtual environments (venv)
activating, 26–28
creating, 25–26
use of, 24–28

Visual Studio Code. See VS Code
Vonage, 237
VS Code, 15

Activity Bar in, 17–18
adding API key to Python project in, 183
allowing to control the mouse, 140
checking the Ollama version from, 284
hardware requirements for, 15–16
installing, 16–18
opening the terminal in, 22–23
project folder open in, 20–21
Python extensions, 18–19
virtual environment, 26
workspace folder in, 19, 20

W
walk_directory function, 77, 79
watermarking PDFs, 173–177

image, creating, 176
script adaptation, 177

wb parameter, 168
web browsers

automating, 197–201
filling forms online, 201–204
filling multiple text boxes, 204–208
finding and filling text boxes, 200–201, 208–211

HTML tags and control types, 200
loading drivers for, 198–200
submitting form with enter, 204

webdriver-manager module, 197
web pages

data extraction, 217–228
finding elements to scrape, 218–221
parsing, 216–217
scraping data from the page,

221–222
scraping links from, 214–217
scraping stock market data, 227–228
sending browser header, 215–216
tools for web scraping, 213–214

web scraping, tools for, 213–214
while loops, 52, 226
while True loop, 157, 262–264, 267
Wikipedia Search box, in DevTools, 201
wild mouse, stopping, 142
Windows File Explorer, 70
Word. See Microsoft Word
workspace folder, 19, 20, 24
.write() method, 147

X
X, 245

Z
Zen of Python principles, 311–330

beautiful/ugly codes, 311–314
complex/complicated codes, 320–321
consistency in coding practices, 326
error handling, 329–330
explicit/implicit codes, 314–317
flat/nested codes, 321–323
practicality/purity, 328–329
readability counts, 325–326
simple/complex codes, 317–319
sparseness, 324–325

ZeroDivisionError, 66
Zip files, 109–113, 116
Z shell (zsh), 27

About the Author
Alan Simpson is the award-winning author of more than 100 tech books covering
Python, web design, and database design. His books have been published in
dozens of languages throughout the world and have sold millions of copies. Alan
also has more than 20 years’ experience as an online instructor and consistently
gets rave reviews from his students for helping to make complex topics
understandable.

Dedication
To Susan, Ashley, and Alec.

Author’s Acknowledgments
Many thanks to Margot Maley, my literary agent at Waterside Productions. To
Steve Hayes at Wiley for bringing me this opportunity and to Elizabeth Kuball and
Doug Holland for supporting me through the process.

Publisher’s Acknowledgments

Managing Editor: Murari Mukundan

Executive Editor: Steve Hayes

Editor: Elizabeth Kuball

Technical Editor: Doug Holland

Production Editor: Tamilmani Varadharaj

Cover Image: © Roman Samborskyi/Shutterstock

Special Help: Carmen Krikorian, Kristie Pyles

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Python Automation
	Chapter 1 Automating with Python
	Choosing a Programming Language
	Understanding Python Syntax
	Getting Python
	Identifying the hardware requirements
	Installing Python

	Chapter 2 Choosing a Code Editor
	Installing VS Code
	Installing Python Extensions
	Creating a Folder for a New Project
	Opening a project’s folder in VS Code
	Selecting your Python version
	Opening the Terminal in VS Code
	Checking your Python version

	Using Virtual Environments
	Creating a virtual environment
	Activating a virtual environment

	Installing Modules
	Writing and Running Python Scripts
	Writing a Python script
	Running a Python script

	Chapter 3 Python Basics for Automation
	Understanding Python Comments
	Mastering Variables and Data Types
	Working with numbers
	Working with text (strings)
	Deciding true or false with Booleans
	Using lists
	Making immutable lists with tuples
	Defining key–value pairs in dictionaries
	Leaving things hanging with None

	Formatting Output
	Dealing with Dates and Times
	Manipulating Data with Operators
	Using arithmetic and string operators
	Using assignment operators
	Recognizing other operators

	Getting Loopy with Loops
	Looping with for
	Looping for a while
	Bailing out of loops

	Making Decisions
	Deciding with if. . .else
	Compacting decisions with a ternary operator
	Deciding with match

	Defining Python Functions
	Defining default values for parameters
	Using type hints in Python functions

	Creating Classes and Objects
	Handling Exceptions

	Part 2 Automating Common Computer Tasks
	Chapter 4 Automating Files and Folders
	Demystifying the Buzzwords
	Drives, directories, folders, and files
	Absolute versus relative paths
	Backslashes in Windows paths

	Playing It Safe
	Navigating Folders and Files
	Organizing Files by Type
	Using mkdir for subfolders
	Moving files with shutil
	Making the script your own

	Renaming Files in Bulk
	Renaming files with Python
	Using the bulk renaming script

	Chapter 5 Automating File Management
	Deleting Old and Temporary Files
	Identifying old files
	Matching the file pattern
	Sending files to the trash
	Using the deletion script safely

	Backing Up Files
	Creating folders from Python
	Copying files with Python
	Personalizing the backup script

	Finding and Removing Duplicate Files
	Calculating a file hash
	Finding duplicate files
	Deleting duplicate files
	Tweaking the find duplicates script

	Compressing Files
	Compressing files with Python
	Setting your compression parameters

	Decompressing Files
	Unzipping files with Python
	Using the decompression script

	Chapter 6 Automating Image and Video Files
	Resizing, Rotating, Flipping, and Cropping Images
	Resizing images
	Rotating images
	Flipping images
	Cropping images
	Customizing the image processor

	Converting Image File Types
	Converting files with Python
	Personalizing the conversion script

	Extracting Frames from Video Files
	Importing modules for video extraction
	Looping through a video
	Tweaking the video conversion script

	Chapter 7 Automating Mouse and Keyboard
	Granting Permissions on a Mac
	Moving the Mouse, Clicking, Dragging, and Scrolling
	Understanding screen coordinates
	Controlling the mouse speed
	Stopping a wild mouse
	Finding the screen locations of things
	Using mouse control with a specific app
	Trying out mouse control

	Typing Text with Python
	Controlling the typing speed
	Typing long passages of text
	Pressing special keys
	Pressing hotkeys
	Detecting the operating system

	Detecting Keystrokes
	Creating Your Own Keyboard Shortcuts
	Automating Screenshots
	Taking screenshots with Python
	Personalizing the auto screenshot script

	Chapter 8 Automating the Office
	Automating Microsoft Word
	Naming your Word document
	Defining your Word content

	Automating Microsoft Excel
	Specifying your workbook
	Defining content for your workbook

	Creating and Opening PDFs
	Defining content for your PDF
	Identifying your PDF

	Watermarking PDFs
	Creating your watermark image
	Adapting the script to your needs

	Part 3 Automating the Internet
	Chapter 9 Interacting with APIs
	Obtaining API Keys
	Safely Storing API Keys
	Creating a .gitignore file
	Using an API key in your script

	Handling JSON Data
	Parsing and serializing JSON data
	Reading and writing JSON files

	Understanding REST APIs
	Making API requests
	Parsing API responses

	Reviewing a Complete REST API Script

	Chapter 10 Automating the Web
	Automating Web Browsers
	Loading drivers for your browser
	Finding text boxes to fill

	Automating Filling Forms Online
	Finding a control
	Submitting a form with Enter

	Filling Multiple Text Boxes
	Clicking a form’s Submit button
	Adapting the script to your needs

	Filling Text Boxes from a File

	Chapter 11 Scraping Web Pages
	Picking the Right Tools for Web Scraping
	Scraping Links from a Web Page
	Sending a browser header
	Parsing a web page

	Extracting Data from a Web Page
	Finding elements to scrape
	Scraping data from the page

	Automating Data Extraction
	Determining whether a business is open
	Scraping stock market data

	Chapter 12 Automating Email and Text Messages
	Sending Bulk Email Automatically
	Collecting account information
	Creating a .env file
	Creating your email-sending script
	Sending HTML mail
	Putting email recipient addresses in a file

	Automatically Sending Text Messages
	Storing SMS account information
	Defining your recipient list and message
	Storing recipient numbers

	Chapter 13 Automating Social Media
	Acquiring API Keys and Modules
	Automating Posting
	Setting up your project
	Making the script your own

	Creating Content for Your Posts
	Tracking Performance Metrics
	Getting Instagram API access
	Setting up your script
	Defining your metrics and timeframe

	Analyzing Trends
	Viewing the trends
	Setting your own keywords and timeframe

	Part 4 Automating More Advanced Stuff
	Chapter 14 Scheduling Tasks
	Using the Schedule Module
	Understanding how the schedule module works
	Scheduling tasks for intervals

	Using the APScheduler Module
	Using APScheduler with intervals
	Using APScheduler with dates and times

	Automating Python Scripts
	Running scripts as subprocesses
	Running scripts as imports

	Chapter 15 Integrating with Artificial Intelligence
	Accessing Free AI through an API
	Warming Up to a Local Chatbot
	Installing and running Ollama
	Downloading AI models with Ollama
	Building a simple local chatbot

	Creating a Conversational Chatbot
	Developing an AI Image Generator
	Showing the generated image onscreen
	Hitting up Hugging Face

	Part 5 The Part of Tens
	Chapter 16 Top Ten Zen of Python Guidelines
	Beautiful Is Better than Ugly
	Explicit Is Better than Implicit
	Using type hints
	Using comments
	Handling errors

	Simple Is Better than Complex
	Complex Is Better than Complicated
	Flat Is Better than Nested
	Flattening nested conditionals
	Using list comprehension

	Sparse Is Better than Dense
	Readability Counts
	Special Cases Aren’t Special Enough to Break the Rule
	Practicality Beats Purity
	Errors Should Never Pass Silently

	Chapter 17 Top Ten Python Error Messages
	Command Not Found
	No Module Named . . .
	SyntaxError
	NameError
	TypeError
	IndexError
	KeyError
	AttributeError
	ModuleNotFoundError
	FileNotFoundError
	IndentationError

	Index
	EULA

hon'
Automation

